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A condition is provided to replace the transversahty condition in characterizing 
the optimality of competitive processes. This extends the work of W. Brock, 
L. Hurwicz, and M. Majumdar (“On Characterizing Optimality of Competitive 
Programs in Terms of Decentrahzable Conditions” and “Optimal Intertemporal 
Allocation Mechanisms and Decentralization of Decisions,” Cornell University 
Working Paper Nos. 333 and 369 (1985)) on providing an informationally decen- 
tralizable condition for characterizing optimality in stochastic intinite-horizon 
models without discounting. Journal of Economic Literature Classification Num- 
bers: 026, 011. ii“ 1988 Academic Press. Inc. 

I. INTR~DUCTL~N 

In the literature on the theory of intertemporal resource allocation it is 
known that optimality for infinite-horizon economies can be characterized 
in terms of two conditions; the first requires intertemporal profit 
maximization and utility maximization relative to a system of “com- 
petitive” prices, while the second is a transversality condition, which 
requires (for undiscounted models) that the value of the capital stock, com- 
puted at the competitive prices, be uniformly bounded over time. These 
results, for stochastic economies, have been proved in Zilcha [ 11, 123. 

There are two problems with the above characterization of optimality. 
The first is that the transversality condition involves a limit, so one cannot 
verify on a period-by-period basis whether or not this condition is being 
attained. I shall call this the absence of temporal decentralization. The 
second problem is the absence of informational decentralization, in the sense 
of Hurwicz [S, Definition 10, p. 4011. In particular, one cannot design a 

* I thank Professor Tapan Mitra for his valuable assistance. This paper is a revision of 
Chapter 4 of my Ph.D. thesis submitted to Cornell University, and supervised by Professor 
M. Majumdar. Research reported here was supported by the National Science Foundation 
under Grant SES 8304131 awarded to Professor M. Majumdar. 
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meaningful recource allocation mechanism that will ensure that the trans- 
versality condition will be met, but which is constrained so that the rules of 
behavior of agents at each date depend only upon the partial history at 
that date. One should consult [9] for futher motivation. 

Brock and Majumdar [3] provide a condition to replace the transver- 
sality condition, which is both temporally and informationally decen- 
tralized. The purpose of this paper is to extend their result to handle 
stochastic economies; in particular to the model of intertemporal resource 
allocation under uncertainty discussed in [lo]. 

The main result of this paper may be described as follows: let (2, 9, e) be 
the optimal stationary process and (fir} the corresponding competitive (or 
supporting) price process (see (3.9) and (3.10)). Then a resource allocation 
process (x, y, c) is optimal if and only if (a) the process is competitive 
(see (3.7) and (3.8)) at some prices {p,) and (b) at each date t, 
E(P, -d,KY, -B,) Q 0. 

The rest of this paper is organized as follows: In Section II some 
preliminary notation is introduced and in Section III the model is formally 
presented. The main results are stated in Section IV. 

II. SOME PRELIMINARY NOTATION 

R” is the n-dimensional Euclidean space. Given any two vectors 
a = (a,, . ..) a,) and b = (b,, . . . . n,) in R” we write a > b if ai 3 bi for each 
i= 1 7 ..., n; a > b if a > b and a is different from 6; and a $ b if ai > bi for 
each i=l,...,n. R”, = {xER”:x>O) and R”,, =(xER”: ~$0). We 
denote by 11 )I the “max” norm in R”; i.e., if a = (a,, . . . . a,) E R”, then 
II4 = maxi Ia, I9 . . . . I4 1. 

III. THE MODEL 

The framework we use is essentially the model of intertemporal resource 
allocation with production uncertainty, where labor is necessary for 
production, studied in [ 10,4, 11, 123. We shall, however, consider the 
version of the model that has been reduced to per capita terms. In 
particular the assumptions we place on the environment’ and the 
technology are similar to those in [ lo,43 stated in per capita terms. 

r The assumptions we place on the environment are similar to those in [4], which is a 
generalization of [lo]. In particular, [lo] assumes that the set of states of the environment at 
any date is finite, the probability measure on the sequence of states, u, is atomless, and also 
that the shift operator, T, is ergodic. These are used in [lo] to obtain bounds on production 
processes. Following [4] we impose these bounds directly in assumptions (T7) and (T.8) of 
this paper. 
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The environment is represented by the probability space (S, 4, a), where 

(i) S is the set of doubly-infinite sequences s= (s,), -cc <t < co, 
with s, representing the state of the environment at date t, which lies in 
some complete and separable metric space E. In particular, S= X7= ~ co E,, 
where for each t, E, = E. 

(ii) 4 is the sigma field generated by cylinder sets in S (i.e., generated 
by sets of the form XF; ~ uri B,, where B, = E for all but finitely many t, and 
where B, beiongs to the Bore1 sigma field on E for all t). 

(iii) c is a probability measure on 4, the probability distribution on 
the sequences of states. 

The shift operator T: S -+ S is defined by 

We assume 

(TJL=s,+,. (3.1) 

(E. 1) T is measure preserving.2, 3 

Assumption (E.l) means that if A is any set in 4, then a(A) = U( TA). For 
any integer i, --cc < i< co, T’ is the ith iterate of T, i.e., (T’s), = s,, ;. 
Given any function f on S we define Ty by 

Ty(s) =f( T’s). (3.2) 

Let 1+5, denote the sigma field generated by the partial history 
( . . . . s,- ,, 3,); 4, is the sigma field generated by cylinder sets Xz -a, Bi, 
where Bi = E for all i > t. 

Recall that 11 . 11 denotes the norm in R” (defined in Section II). We define 
for each t = 0, I, . . . . 

L’(&,)= f: S-+R”lfisd,- measurable and i Ilf(s)ll do < co (3.3) 

L”(r),) = {f: S+ R”lfis d,- measurable and essentially bounded4}. (3.4) 

2 Assumption (E.l) implies that T-’ is measure preserving. 
3 One consequence of the assumption that T is measure preserving is the following: Given 

any &measurable function J Jr(s) do = Jf( Ts) da. 0 ne should consult [ 1 ] for more on 
measure-preserving operators. 

‘/is essentially bounded if there is a 0 < C < ZI such that /lf(s)ll < C as. 
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II1.b. The Technology 

The technology is described by the correspondence z: R”, x S + R: ; 
t(x, s) is the set of output possibilities at date 1 if the input is XE R: 
at date 0 and the state of environment is SE S. Define B(s) = 
{t-x, Y) E R”, x R”, I .J ‘E z(x, s)} for each SE S. We impose the following 
assumptions on the technology: 

(T.l) For all s E S, B(s) is closed and convex and contains (0, 0). 

(T.2) For all SE S, “(x, y)~ B(s), x’ > X, and y’<y” implies 
“(x’, y’) E B(s)” [free disposal]. 

. (T.3) For all s E S, if (0, y) E B(s) then y = 0 [importance of inputs]. 

(T.4) For all x E R”, , z(x, .) is d,-measurable (i.e., for any closed set 
Fin R",, {sls(x,s)nF is not empty} is in 4,) [measurability]. 

Assumption (T.4) is the requirement that production possibilities at date 1 
depend (measurably) on the history of the environment up to date 1. 

Define G = {(IX, fl)l M, T-‘~E L”(#,) and (a(s), p(s)) E B(s) a.s.), the set 
of all (stationary) production plans. Any (a, p) in G has the following inter- 
pretation: a(s) is the input at date 0 and b(s) is the corresponding output 
at date 1 when the state is s E S. We assume that there is a production plan 
whose net output is bounded away from zero: 

(T.5) There is a (CI, 8) E G such that /I( T-Is) - CL(s) 3 E a.s. for some 
CER”,,. 

We also require the following convexity assumption on the G: 

(T.6) For any (a, /I) and (a’, fl’) in G with a(s) different from a’(s) 
on a set D with positive measure, and for any &,-measurable random 
variable a, with O<a(s) < 1 a.s., there exists a /I” in L”(d,) such that 
B”(s) 2 4s) B(s) + (1 - 4s)) P’( s as. with strict inequality for any s in D, 1 
and (aa + (1 -a) a’, /I”) E G [weak strict convexity of outputs]. 

A feasible process from initial stock YE L”(c$,) is a stochastic process 
ix,* v,, ~,>,oo=o which satisfies: 

(a) (x,,y,+,)~T’Gfor t=O, 1, 2 ,...; 

(b) .r,,=y and c,=~~-x,>O a.s. for t=O, 1,2 ,..., 

where T’G= {(a,, /I,): aI= T’a and /I, = T’g for some (a, fl)~G). (The 
shift operator, T, and its tth iterate, T’, are defined in Section 1II.a.) 

Let P(y) be the set of all feasible processes from initial stock y E L”(&,). 
We shall denote a feasible process by (x, y, c), where x = {x,}~= ,,, 
Y = {Y,l;“=,? and c = {c,}r= ,,; we refer to x, y, and c as the input, output, 
and consumption processes, respectively. 
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Let G,= ((~1, P)EG( fi(T-‘s)-a(s)>0 as.}, the set of all feasible 
stationary production programs; each (a, fi) in G, defines a stationary 
feasible process (x, y, c), where for each t > 0 and s E S, 

x,(s) = a( T’s), Y,(S) = 8(T’-‘s), c,(s) = Y,(S) - x,(s). 

The next two assumptions place bounds on feasible processes and 
stationary production programs. Recall that 11 . 11 is the norm of R”, 
(defined in Section II). 

(T.7) For each YE L”(q5,) there is a 0 <K(y) < co, such that if 
(x, y, c)~P(y), then for all t 20, Ilx,(s)ll <K(y) as., lly,(s)ll 6 K(y) a.% 
and Ilc,(s)ll <K(y) as. 

(T.8) There is a 0 < Q -C co such that for all (a, p) E G,, Ila(s)ll < Q a.s. 
and II/3(s)ll 6 Q as. 

Remark. Note that the bound in (T.7) clearly depends on the initial 
stock. The bounds in (T.7) and (T.8) may be obtained by starting with 
the model in [lo], where’ labor is necessary for production, and then 
assuming that the labor supply process is bounded and finally reducing to 
per capita units (see [ 10, Theorem 3.1 and Lemma 3.21). 

111.~. Optimality and Competitive Prices 

Feasible processes are evaluated according to the utilities generated by 
the corresponding consumption process. Let u: R”, + R be the one-period 
utility function. We assume 

(U.l) u is continuous on R”+ ; 

(U.2) 2.4 is strictly increasing (i.e., c, > c2 implies u(c,) > u(cz)); 

(U.3) u is strictly concave on R”, . 

A process (x*, y*, c*) in P(y) is optimal if for all (x, y, c) in P(y) 

lim sup ? [Eu(c,) - Eu(c:)] < 0, (3.5) 
N-a I=0 

where E is the expectation operator. 
A program (6, fi) E Go is said to be an optimal stationary program if 

sup I u(/?( T-‘(s)) - a(s)) da = i u(/?( T-‘(s)) - i(s)) da. (3.6) 
(I, B)E Go 

The existence of an optimal stationary program was first proved in [lo]. 

LEMMA 3.1. (Radner). There exists an optimal stationary program. 
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ProoJ See’ [4, Corollary IV.1, p. 1891. 1 

Using the strict convexity assumption on the technology (T.6) in 
addition to the strict monotonicity and strict concavity assumptions on the 
utility function, (U.2) and (U.3), it is easy to show that the optimal 
stationary program, which we denote by (a, j), is unique. We define the 
optimal stationary process, (2, 9, ir), by a,(s) = a( T’s), j,(s) = p( T’s), and 
t,(~)=j,(s)--it(s) for all SES and t=O, 1, . . . . 

A feasible process (x, y, c) is a competitive process if there is a sequence 
{p,}?:, such that for each t, p,~L’(#,),p,(s)>O a.s., and 

u(c,(s)) - P,(S) c,(s) b u(c) -P,b) c a.s. for all c in R”, (3.7) 

ECP,+,(s).Y,+,(sM,l -P,(S) X,b)2HPr+ I(J) /3(s)ld,l -P,(S) 4.y) 

a.s. for all (c(, 1) in T’G. (3.8) 

Remark. The competitive conditions (3.7) and (3.8) are sometimes 
stated as 

for all p E L”(&,) with p(s) 20 a.s. (3.7)’ 

I P ,+1(~)~,+,(~)da-Sp,(s)x,(s)~~3I~,+,(s)B(s)da-Ip,(s)l(s)da 

for all (a, fl) in T’G. (3.8)’ 

As observed by [12, Remark on p. 5191, since G is defined as the set of all 
measurable selections of B(s), it is easy to show that (3.7) and (3.8) are 
equivalent to (3.7)’ and (3.8)‘. 

The existence of competitive prices for the optimal stationary process 
was first shown in [lo]: 

LEMMA 3.2 (Radner). There exists a system of competitive prices, {b,} 
for optimal stationary process, (n, i,?). In particular, there is a p E L*(#,) 
such that for a/I t = 0, 1, . . . . p,(s) =$( T’s) > 0 a.s. and 

u(~,(s))-Pt(s)~,(s) 2 u(c) -P,(s) c a.s. for all c E R”, (3.9) 

a4,+,(s)~,+1(s)I4,1 -B,(s) a,(s)am,+I(s) B(s)l4,1 

-B,(s) 4s) a.s. for all (~1, /?) in T’G. (3.10) 

Proof: See [4, Theorem VIII.1, p. 1943. 1 
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Let (x, y, c) be a competitive process with supporting prices {p,). We 
define 

0, = (P, -d,)(xt - -2,). (3.11) 

In characterizing the optimality of competitive processes, u, will play an 
essential role. An immediate consequence of the competitive conditions 
(3.7)-(3.10) is the following martingale result first noted by [S]: 

LEMMA 3.3. Let (x, y, c) be a competitive process with supporting prices 
( pr }, and let v, be as in (3.11). Then v, is a submartingale, and, in particular, 
Ev, 3 Ev, for all t = 0, 1, . . . . 

Proof: From the competitive conditions (3.8) and (3.10), for each t 2 0, 

E[P,+,(Y,+, -3,+~)14,1~~,(~,-~,) a.s. (3.12) 

ELfi,+ ,(P,+ I -Y,+~)I~,I~*,(~,-x,) a.s. (3.13) 

so by addition, 

EC(pr+, -d,+l)(Yt+l -~,+,)I~,I~(P,-B~)(x,-~,) a.s. (3.14) 

Next, from the competitive conditions (3.7) and (3.9) 

U(C,)-P,C,3U(~,)-P,~, as (3.15) 

u(t,) -fi,t, 3 u(c,) -d, c, a.s (3.16) 

so by addition, 

(P,-fir)(C,-2r)GO a.s. (3.17) 

Using (3.14) and (3.17) (for t+ 1) one obtains 

EC(~,+,-~,+,)(x,+,-~G,+,)l~,l~(~,-~,)(x,-~2,) a.s. (3.18) 

from which the lemma follows immediately. i 

We refer to i and i as the golden rule input and output, resp. The golden 
rule input, 1, is said to be expansible iffor some z E R”, + , (-2, T2 + z) E G. 
Clearly, if the golden rule consumption, t(s) = $( T- ‘s) - i(s), satisfies 
C(s) 2 r a.s. for some r in R”+ + , then i is necessarily expansible. We now 
show that if the golden rule input, 2, is expansible, then from ~2 a multiple d 
(with d > 1) of 2 can be produced. 

LEMMA 3.4. Suppose that the golden rule input, 2, is expansible; then 
there is a d > 1 such that (a, dT,f ) E G. 
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Proof: Let I=(l,..., l)~&+. Since 1 is expansible, there is a 
‘y = (=, ,..., z,z) E R”, + such that (i-, T,< + z) E G. Let Z= min{z,, . . . . z,}; then 
z > 21% 0. Also, from (T.8) there is a 0 < Q < co such that (1 Ti(s)jl < Q a.s.; 
hence 0 6 Ti(s) < QI a.s. Let d= 1 + (.?/2Q). Then T;i-(s) + z - dTi(s) = 
(1 -d) Ti(s)+z= -(F/2Q) T.G(s)+z> -(.F/2)1+S=(?/2)1$Oo. Hence 
TZ(s) + 2 9 dTi(s) a.s.; but then since (,-i, Ti+ Z)E G, the free disposal 
assumption (T.2) implies that (a, dT?) E G. u 

The following lemma will be used in proving the results in the next 
section, and may be of independent interest. 

LEMMA 3.5. Suppose that the golden rule input, .C, is expansible. Let 
0 < 6 < 1. Then there is an M > 1 such that for all b > 6 there is a feasible 
process (x, y, c) with y0 = 6.2 and x,(s) = .Iz,(s) a.s. for all t >, M. 

Proof: Fix a 0 < 6 < 1 and let d> 1 be as in Lemma 3.4 above. Since 
6d’=&<l fort=Oandfid’-+cc as t+cc,thereisankf’>Osuchthat 

bd’< 1 for t<M’ and 6d’> 1 for t>M’. (3.19) 

Let M= M’ + 1. Fix any b > 6 We now construct a process (x, y, c) 
feasible from bk Define y, = bf, x0 = 62, and c0 = y, - q, = (b - 6) 1; for 
1 < t < M’, if there exists such a t, define y, = x, = 5d’a, and c, = 0; and for 
t > M’, define y, = x, = ,C1 and c, = 0. 

To show that (x, y, c) is feasible observe that y,= bft and 
c, = y, -x, 2 0 for all t > 0, so it remains only to show that for all t >, 0, 
(.x,,Y,+~)E T’G. 

First we show that 

(hd’i,, f;d’ dzZ,+ !) E T’G for all 0 < t < M’. (3.20) 

To see this note that from (3.19), for all O< t GM’, bd’< 1; but from 
Lemma 3.4 above, (.?,, di,, ,)E T’G, and from (T.l), (0, 0)~ T’G, so (3.20) 
follows from the convexity assumption on the technology, (T.1). 

We now use (3.20) to prove (x,, y, + 1) E T’G for all t = 0, 1, . . . . If 
O<t<M’, then (x,,~,+,)=(~d’~,,~d’d~,+,), so from (3.20) 
(x,, y,, ,)E T’G. If t = M’, we obtain from (3.19) that bd’+’ > 1 so 
6d”‘.C-,+ I(s)>3;,+ ,(s) as.; but then (3.20) and the free disposal 
assumption (T.2) implies that (xI, y,, ,) = (6d’.?,, 1,+ 1)~ T’G. Finally, if 
t>M’, then (x,, y,+,)=(l,,f f+ ,), which clearly belongs to T’G. 

With M= M’ + 1, it is easy to see that (x, y, c) satisfies all the 
conclusions of the lemma. 1 
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IV. THE MAIN THEOREMS 

In this section the principal results of this paper are proved. That is, we 
prove that optimality can be completely characterized in terms of period- 
by-period conditions (see (4.1) below), thereby replacing the transversality 
conditions. 

THEOREM 4.1. Suppose that the process (x, y, c) is optimal from y, $0. 
Then the process is competitive at some prices {p,}, and 

~T(p,-d~)(y,--P,)l<O for all tZ0. (4.1) 

Proof: From [ll, Theorem 1, p. 4341 we know that the optimal 
process is competitive at some system of prices ( p, ). 

For any y= 0, 1, . . . and y E L”(qS,), define 

P,(Y)= {{x:,~:,c:},“=,Iy;=~, (x:,Y:+,)E~% 

and 

as. for all i> t}. 

Next, define the function g!(x’, y’, c’) on P,(y) by 

g,(x’, y’, c’) =limizf $J [Eu(c:) - Eu(f,)] 
i=f 

and 

Jc(Y)=suP{&?,(x'? Y'? c')l(x't Y', c')EP,(y)). 

Then from the proof of [ll, Theorem 1, p. 4343, since {xi, yi, c,}z, and 
{ii, ii, c!~}~=, are optimal’ from y, and jj,, resp., we obtain 

WAY,) - @‘A?,) 3 ECp,y, - ~,3,1 (4.2) 

WA.?,) - WAY,) 2 ECB,P, -@,Ytl. (4.3) 

Adding (4.2) and (4.3) and rearranging results in (4.1), the theorem is 
proved. fi 

5 The assertion that the optimai stationary process is optimal from its own initial stock 
among the set of all feasible processes is not true without the stronger convexity assumption 
on the technology (assumption (T.6)), as an example in [2, p. 2791 with linear technology 
indicates. The proof of the assertion under our assumptions is as follows: 
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THEOREM 4.2. Suppose that the golden rule input, i’, is expansible. IJ 
(x, y, c) is a competitive process at prices { pt} and (4.1) holds, then the 
process (x, y, c) is optimal. 

Before we prove Theorem 4.2 we will state some preliminary lemmas 
which may be of independent interest. In each of these lemmas (x, y, c) will 
be a competitive process and {pr} will be its supporting prices. 

LEMMA 4.3. Suppose that (4.1) holds. Then 

E[(p,-fi,)(x,-a,)],<0 for all t>O. (4.1)’ 

Proof. This follows immediately from taking expectations in (3.14) and 
using (4.1). 1 

LEMMA 4.4. Suppose that (4.1) holds. Then there there is a 0 < H < oz 
such that 

Ep,x, - Ep, .?, < H for all t B 0. (4.4) 

Proof. Fix a t = 0, 1, . . . . Then using (4.1)’ in Lemma 4.3 above, 

Ep,(x, - -2,) < E@,(x, - a,) < Ep,x,. (4.5) 

Let (x, y, c) be any feasible process from initial stock j,, Then from the competitive 
condition (3.10), for all N=O, 1, . . . . 

,=O ,=O 

=E ; Id,(v,-3,)-a,c.~,-a,,l 
,=O 

=E i I~,+,(Y,+I -~,+,)-B,(~,--~,)I-E~N+,(YN+~-PN+,) 
,=” 

+Bo(vo-30). 

From the competitive condition (3.10) the summation above is nonpositive; further, from ~12, 
Corollary 1, p. 5213, we may set Km,, a: &N+l(~N+I-PN+I)=O. Hence, ify,=j,, taking 
limits in the expression above yields 

lim sup E f [u(c,) - u(?,)] < 0, 
N-r ,=o 

which proves the assertion. 
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From assumption (T.7) there is a 0 < K(y,,) < 03 such that Ilx,(s)lj < K(y,) 
a.s. (where jl . I/ is the norm on R”, , defined in Section II). Hence 

@,x,~ECIIi, II . Ilx,ll16J4~,) HIlO, III. (4.6) 

However, T is measure preserving3 and d,(s) =b( T’s) with MEL’; so 
Ellp, II = Ellfill < co. Thus if we define H = K( yO) E @/I then the claim 
follows from (4.5) and (4.6). 1 

LEMMA 4.5. Suppose that (4.1) holds and the golden rule input, .<, is 
expansible. Then there is a 0 < L < cc such that for all N = 0, 1, 2, . . . . 

“Ep, y,JEp,.t, > y’ implies “EpN y, d L.” (4.7) 

ProoJ: Let A42 1 be the constant in Lemma 3.5 corresponding to 
6=$. Fix an N=O,l,.... Define b, = Ep, y,/2Ep, c?~ and suppose 
that EpNyN/EpN .<,,,> t; then b,>+. From Lemma 3.5 there is a feasible 
process (x”, y”, c”) such that yi = b,1, and XL = 1,. We seek to 
“start” the process (x”, y”, c”) at date N; to this effect we define the 
sequence {xi, y:, c:},?= N by x:(s) = x:- N( T”‘s), y:(s) = y:‘- ,,,( TNs), and 
c:(s) = c:‘-,.J TNs), for all t 3 N and s E S (where T is the shift operator 
and TN is its Nth iterate, defined in Section 1II.a.). Observe 
that J$ = b,.f,, xh+,,,, = 1,+, and for all t > N, (xi,y:+,) = 
( TNx:- N, TNy:‘+ , ~ N) E T’G. 

From the bound placed on the technology, assumption (T.7), there is 
a compact set in R”, + that contains c,(s) for all t = 0, 1, . . . . and o-almost 
every s E S; since the utility function is continuous (U.l), we conclude that 
there is a 0 <J< co such that for all t 20, #(c,(s)) < J a.s. Under 
assumptions (U.1) and (U.2) we may suppose without loss of generality 
that u(O) = 0 and u(c) b 0 for all c E R”, . Hence 

N+M N+M 

c (Eu(c,)-Eu(c;)}< c Eu(c,)<(M+l)J. (4.8) 
f=N I=N 

Next we use the competitive conditions (3.7) and (3.8) to obtain 
NiM N+M 

1 (WC,)- E44) 2 1 E{ p,(c,- c’t)f (from (3.7)) 
f=N 1=N 

N+M 

= c E(P,(Y,-Y:)-P,(x,-x:)) 

N+M- 1 

c E{P,+1(y,+,-yy:+1 )-Pt(Xt-xi)l +EPN(YN-Yh) 
I=N 

-EPN+M(XN+.M--~+M) 

~EP,(YN-~‘,)-EPN+,(-~,+M-X’,+, 1 (from (3.8)). (4.9) 
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Substituting y> = b,.t, and XL + M = iN + M in (4.9) and using the resulting 
expression in (4.8) yields 

(MS l)J~Ep,y,-~,EP,~-,-Ep,+,(x,+,-.~-,+,) (4.10) 

and therefore since 6, = Ep, y,/2Ep.i-,, 

(M-t l)J~~E~,.~,-Ep.+,(.lz,+,-~,+,). (4.11) 

But from Lemma 4.4, Ep,,,+M(~N+M-~.N+M)<H for some O<H<cc; 
using this fact in (4.11) and rearranging terms we obtain 

Ep,y,62[(M+l)J+H]. (4.12) 

Defining L = 2[ (A4 + 1) J + H] then concludes the proof of the lemma. 1 

We now prove Theorem 4.2. 

Proof of Theorem 4.2. From [ 12, Theorem 1, p. 5211 it suffices to show 
that sup, Ep, y, < co. Suppose, per absurdem, that this is not the case; then 
there is a subsequence, { tk}, such that 

lim Ep,, y,, = CO. 
k - cc 

(4.13) 

We now prove the following: 

Claim, 

lim sup EP,,Y,,IEP,, itk 2 1. k+r 

Proof of Claim. Fix a t = 0, 1, . . . . Then 

EP, Y, > EP,x, = 1 + EP,(x, - at) 
Ep,a,‘Ep, EP,~[ ’ 

(4.15) 

(4.14) 

From Lemma 3.3, Eu,Z Eu,, where v, = (p, --a,)(~, - .<,); a simple 
rearrangement of this inequality results in 

Ep,(x,-f,)>Ep,(x,-g,)+Ev,> -Eb,Z,-IEu,(. (4.16) 

Since a, = T’& 2, = T’i and T is measure preserving,3 EC, gt = E@. 
Substituting this in (4.16) and using the result in (4.15), we may conclude 
that for each t = 0, 1, . . . . 

EP,Y, > 1 _ Efi$+ lEuOl 
m’ EP,~, ’ 

642:45:2-E 

(4.17) 
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Hence for each k = 0, 1, . . . . 

(4.17)’ 

Taking the lim sup of both sides of (4.17)‘, 

lim sup 2, EPr,Y >I- Epi+ IEuo( 

k+ m  EP,~ i’ta lim sup, + m EP,,%,’ 
(4.18) 

If lim sup, _ o. Ep,, ?(,= co, then (4.14) follows from (4.18). If, however, 
lim sup, _ o. Ep,, g,, < co, then EP,~ it, is uniformly bounded in k so (4.14) 
follows from (4.13). 1 

To complete the proof of Theorem 4.2, note that the claim implies that 
for infinitely many k’s, Ep,, y,,/Ep,,i-,,>i; but then from Lemma 4.5, for 
all such k’s, Ep,, y,, < L for some 0 < L < 00. Hence 

lim inf Ep,, y,, < L < co, 
k-cc 

(4.19) 

which is a contradiction to (4.13). 
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