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We examine the behavior of optimal consumption and investment policies in 
aggregate stochastic growth models when utility depends on both consumption and 
the stock level. Such models arise in the study of renewable resources, monetary 
growth, and growth with public capital. Conditions are given which guarantee that 
optimal policies are monotonic. The limiting behavior of the optimal consumption, 
investment, and output processes is characterized. Journal of Economic Literature 
Classification Numbers: 026, 111, 721. KZ 1991 Academic press, IX. 

1. INTRODUCTION 

For a number of important dynamic resource allocation problems, the 
reward or utility of an agent depends on the size of the resource stock as 
well as the amount consumed in any period. This is perhaps most evident 
in renewable resource models but there are other problems where stock- 
dependent rewards are important as well. These include the effect of wealth 
on consumption and savings behavior [15], the role of money in a 
growing economy [4,7,26], liquidity constraints and the incorporation of 
real balances in the utility function [ll], and the theory of the balance of 
payments in dual exchange rate economies [ 12,241. 

* We thank Professors Jess Benhabib and R. Robert Russell for helpful discussions and two 
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Much of the literature on stochastic dynamic resource allocation focuses 
on the long run behavior of optimal consumption and investment policies. 
For the one-sector optimal growth model with stock-independent rewards 
and concave production, a series of papers by Brock and Mirman [S, 61 
and Mirman and Zilcha [21,22] examine conditions under which the 
optimal capital stock converges to a unique limiting distribution. These 

results are extended to a model with non-convex technology by Majumdar, 

Mitra, and Nyarko [IS] and to the case of irreversible investment by 

Olson [25]. 
The purpose of this note is to investigate the monotonicity and con- 

vergence properties of optimal policies within the context of a generic 
stochastic growth model with stock-dependent rewards. In our investiga- 
tion we derive most results strictly from assumptions imposed on the 
primitive data of the model, that is, assumptions on preferences and 
technology. In Section 2, we show that complementarity between state and 
policy variables in the reward function is sufficient for optimal consump- 
tion and investment policies to be nondecreasing functions of the resource 
stock. We then investigate the dynamic behavior of the model and charac- 
terize the convergence of optimal resource stocks. Proofs are given in 
Section 3. 

There is a close relationship between our work and the analysis of 
renewable resource markets by Mendelssohn and Sobel [19] and Mirman 
and Spuiber [20] in the case of uncertainty, and by Levhari, Michener, 
and Mirman [13, 143 in a deterministic setting. Unpublished work by 
Majumdar [17] also examines a deterministic version of the problem. 
A related, but alternative approach to studying convergence is given in 
Easley and Spulber [lo]. 

2. RESULTS 

At each date t there is a resource stock denoted by y,~&?+. Given 
knowledge of y,, the agent determines a consumption level c,. The resource 
stock left at the end of date t (after consumption) represents investment 
and is denoted by x, = y, - c,. Let (r,} ,“= i be an independent and identi- 
cally distributed (iid) process taking values in some compact set @, 
where Gp is a subset of a finite dimensional Euclidean space. Growth 
in the resource stock is governed by the production relationship, 
y,, i =f((~~, rt+ i) =f(v, - ct, r,+ ,), where f: &?+ x @J + &?+ is the produc- 
tion function. Let y be the (common) probability measure associated with 
the shock process rl. At the beginning of each period (before the consump- 
tion decision), it is assumed that the agent observes the true resource stock. 
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Given a resource stock, y,, and a consumption, c,, the agent receives 
rewards R(c,, y,). Given an initial stock, y, > 0, the agent seeks to solve 

UYO) = y; E f 6’Nc,, Y,) 
1=0 

(2.1) 

subject to 0 < c, 6 y,, where 6 E (0, 1) is the discount factor and V is the 
value function. 

The production and reward functions are assumed to satisfy the 
following restrictions. 

A.2.1. For all r, f(x, r) is strictly increasing in x. 

A.2.2. f is concave in x. 

A.2.3. For all r, f (0, r) = 0 while f(x, r) > 0 if x > 0. 

A.24 The first and second derivatives of f(x, r) in x exist and are 
continuous in (x, r). 

A.25 There exists a j such that f (y, r) < y as. for all y > j. 

A.2.6. R(c, y) is nondecreasing in y. 

A.2.7. R(c, y) is concave in (c, y). 

A.2.8. R(c, y) is twice continuously differentiable. 

A.2.9. Yo E (0, Yl.’ 
A.2.10. f(x, r) is strictly concave in x for each r and R(c, y) is strictly 

increasing in y. 

A.2.10’. R(c, y) is strictly concave. 

The specification of the model satisfies the usual continuity and boun- 
dedness conditions so that standard dynamic programming arguments 
(cf. Blackwell [3] and Maitra [ 163 ) can be used to show that there exists 
a stationary optimal policy function of the form c, = C*( JJ,). This gives the 
following result. 

THEOREM 2.1. Under A.2.1-A.2.10 there exists a stationary optimal 
policy function c, = C*( y,). Furthermore, the following functional equation 
holds : 

V(y) = oy;:v R(c, Y) + 6 j v(f(y - c, r)) y(dr). 
. . . 

(2.2) 

In addition, the value function is continuous and the optimal policy function 
is continuous. 

1 This assumption is without loss of generality due to A.25 
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Given C*(y), the optimal investment policy function is defined to be 
X*(y)=y-C*(y). Definey:, c:, and XT to be the optimal output stock, 
consumption level, and investment at date f. Henceforth, we assume that 
the optimal consumption and investment policies are strictly positive. This 
will hold if the usual Inada conditions are imposed on R. Under this 
assumption, one can show that optimal processes are characterized by the 
following stochastic Euler equation, where R,. and R,. denote the 
derivatives of R with respect to c and y. 

THEOREM 2.2. Under A.2.1-A.2.10, if 0 < c,* < y: for all t, then y,?, 
CT, xj+ satisjj 

MC: 3 Y:) = dE{ CR,.(cT+ 1, ~7, ,I 

+R,,(c,*,,,~,*,~)lf’(x:,r,+~)). (2.3) 

We now examine the monotonicity properties of the optimal consump- 
tion and investment policies under the following assumptions. 

A.2.11. R,,. > 0. 

A.2.11’. R,:,.>O. 

A.2.12. R,,. + R,, 6 0. 

A.2.12’. R,, i- R,, < 0. .’ 

A.2.11 and A.2.12 can be interpreted as complementarity conditions 
between consumption and output from production on the one hand, and 
investment and output from production on the other2 

THEOREM 2.3. Under A.2.11, C*(y) is nondecreasing in y. C*(y) is 
strictly increasing if A.2.11’ holds. 

THEOREM 2.4. Under A.2.12, X*(y) is nondecreasing in y. X*(y) is 
strictly increasing if A.2.12’ holds. 

Theorem 2.3 extends similar results obtained by Brock and Mirman [S], 
Mirman and Zilcha [21], and Mendelssohn and Sobel 1191, all of whom 
assume that the reward function depends solely on consumption. 
Theorem 2.4 is the stochastic analogue of deterministic results obtained by 
Majumdar [17] and Benhabib and Nishimura [ 11, and is similar to 
Theorem 4.2 in Mendelssohn and Sobel [19]. 

We now study the limiting behavior of the optimal stochastic investment 
process governed by the transition equation x,, I = X*(f(x,, rt+ 1)). The 

’ I f  R(c, y) is expressed as R( y  - X, y) = W(x, y). then W, = -R, and R,, + R,, < 0 implies 
I+',,.= -R,,-R,,ZO. 
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monotonicity and continuity of the optimal investment and consumption 
policy functions are used to prove that optimal processes converge to an 
invariant distribution, the stochastic analogue of a steady state. Then, we 
give sufficient conditions for the invariant distribution to be unique. In 
general, however, the invariant distribution need not be unique. The 
analysis relies on techniques developed by Dubins and Freedman [9] to 
study the convergence behavior of the Markov process. In the economics 
literature, these methods were first used by Majumdar, Mitra, and Nyarko 
[18] to study the stochastic optimal growth model with a non-convex 
technology. 

Define r’ = (rl, . . . . r,) and let y’ be the joint distribution of rr. For 
each n and rn, define Xn( ., r”) by the relation Xn(xO, r”)= 
X*(f( a--X*(fW*(fh, rl)), rd), . . . . r,)) so that Xn(.xO, r”) is the realiza- 
tion of x, given x0 and r” = (r, , . . . . r,). If p is any probability on %!+ define 
the probability 7”~ on W, to be y”p(A) = s y”( {r”l Y(xO, r”) E A}) p(dxO), 
where A is any (Borel) subset of .@?+ . y”~ is the distribution of x, when the 
distribution of x0 is p. p is an invariant probability if ylp = p. A subset S’ 
of .~4?+ is said to be y-invariant if it is closed and if y( (r E @ 1 X*(x, r) E S’ for 
all x E S’}) = 1. A subset s” is a minimal y-invariant set if it is y-invariant 
and if any strict subset of S” is not y-invariant. 

Define f,(x) = min,f(x, r), f+,(x) = max,f(x, r), Jf,,Jx) = .Y*(f,&)), 
and X,(x) =X*(&(x)). The minimum and maximum are well defined 
since f and X* are continuous and defined over the compact domain 
[0, j], where jj is given in A.2.5. Further, from the Maximum Theorem 
[Z, p. 1161, fm,fM, X,,,, and X, are all continuous in x. Let S be some 
y-invariant interval [_s, S]. We assume that on S, X,,,(x) < X,,,,(X).~ Define 
the sequence (a,, ri,, b,)z= r inductively by a, = Infix> b,_ , /X,(x)=x>, 
6, = Inf{x> a,, IX,(x) = x}, a,, = Sup{x~ [a,, b,] 1 X,(x) = x}, where 
6, = _s (see Fig. 1). Since X,,, and X, are continuous and S is compact, 
Brouwer’s fixed point theorem implies that X,,, and X, have at least one 
fixed point. Thus, a,, ri,, and b, are well-defined for at least one n. Let N* 
be the maximum over n such that a,,, ci,, and b, are well-defined. We can 
now state the following convergence result. 

THEOREM 2.5. (a) Fix any integer n E [ 1, N*]. Then the set [a,, b,] is 
a y-invariant interval and [a,, b,] is a unique y-invariant interval in itself 
There exists a unique y-invariant distribution on [a,, b,]. If xOe [a,, b,] 
then the distribution function of XT converges uniformly to the distribution 
function of the invariant distribution on [a,, b,]. 

3 Let j be as in A.25 Under an Inada condition on fit can be shown that there exists an 
E > 0 such that [E, j] is y-invariant. Further, if there exists no x> 0, y > 0 such that 
r({l I&, r)= y})= 1, then X,(x)<X,(.r) on [sj] (see Nyarko and Olson [23] for 
details). 
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FIG. 1. Illustration of fixed points a,. ri,, and b,.4 

(b) The set T= U,“=r, (b,.. ,, 6,) u [b,, ril) u (b,,,*, j] is transient. Z’ 
x0 E T, then, with probability one, .x: will in finite time leave T and never 
return. 

(c) There is a unique invariant probability on S if and only if N* = 1. 

This theorem states that once an optimal process enters an interval 
[ci,, b,] it will remain there forever and converge to a unique limiting 
distribution on [ci,, b,]. Furthermore, sets of the type (b,-, , a,) are 
transient. Optimal processes converge globally to the same (unique) 
invariant distribution on S if and only if there is only one interval of the 
type C4, bJ. 

3. PROOFS 

Proof of Theorem 2.1. See Nyarko and Olson [23]. 1 

Proof of Theorem 2.2. The proof follows the proof of Theorem 4.2 in 
Majumdar, Mitra, and Nyarko [ 181 once it is modified to account for the 
dependence of R on both c and y. 1 

Proof of Theorems 2.3. and 2.4. With suitable modifications, the proofs 
follow arguments originally given in Dechert and Nishimura [S]. 
Complete proofs are given in Nyarko and Olson [23]. 1 

4 In Fig. 1, the space S could be taken to be the interval [b,, b2], 
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Proof of Theorem 2.5. (a) Fix any integer n in [ 1, N*] and any x in 
[ci,, b,]. Then for any r in @, 4, =A’,(&) <X,(x) < X*(f((x, r)) 6 
X,(x) d X,(b,) = b, so for all r, X*(f(x, r)) E [ci,, b,]. The set [k,, b,] is 
therefore a y-invariant closed interval. 

Now let [a, b] be any closed interval in [ci,, b,]. If b < b,, X,(b) > b, 
so [a, b] is not y-invariant. If a > a, then X,(a) < a, so [a, b] is not 
y-invariant. Hence there is no closed interval [a, b] strictly contained in 
[d,, b,] which is y-invariant so [ci,, b,] is the unique (and hence minimal) 
y-invariant interval in itself. The uniform convergence of the distribution of 
x: to the y-invariant distribution on [ci,, b,] follows from Dubins and 
Freedman [9, Theorem 5.15 and Corollary 5.51. 

(b) Fix any integer n in [2, N*]. For such n, the set (bnpl, ii,,) has 
the two intervals [ci,_ i, 6, ~ 1 ] and [ri,, b,] to its left and right, respec- 
tively, and both of these sets are y-invariant as shown in (a) above. Hence, 
once the x, process leaves the set (b, ~, , ci,,) it never returns to it. 

Note that X,(x) > x for all x in [u,, 6,). Since X, is continuous there 
exists an s>O and a k>O such that X,(x)>x+ k for XE [a,--&, 2,). 
Define the sequence of numbers {a,} p=, by 1, = a, -a and 1, + i = X,(x,). 
Let JI be any integer greater than (6, - (a, - E))/k. Then it is easy to see 
that iz will enter the set [ci,, b,] in less than 1, periods. 

For any {x~}~=~ process generated by X*(f(x, r)), define q1 = Prob( (xJ, 
E[B,,~,]Ix~=~~-E}). Then ql>O. Since the transition function 
X*(f(x, r)) is monotone in x, Prob( {xJ, E [ri,, b,] 1 x0 E [a, - E, ii,,)}) 2 ql. 
Since X,(x) < x for all x in [b,- i, a, -E) there exists a q2 > 0 and an 
integer J2 such that Prob({ XJ~E[B,~1,b,~111xoE(b,~1,a,-E)))3q,. 
Define q = Min{q,, q2} and J = J, + J,. Then, Prob( (xJ leaves 
(b,_,,ci,)lx,E(b,_l,ri,)})~q>O. Finally, if x0 belongs to (bHpl,Lin), 
Prob({x, E (b,-l,ci,) for all t}) < Prob({x,, E (b,-l,ci,) for all 
k = 1,2, . ..}) = n& Prob({x,, E (bnel, b,)lxmJ E (bnpl, ri,) for all 
m<k})<~~~l(l-q)=O. Hence, the set (b,-,,ci,) for 2<n<N* is 
transient. 

Using similar methods one can show that if x06 [b,, cii) then x enters 
[cii, b,] in finite time and if x,,E (b,,,*, jj] then x, enters [AN,, bN.] in finite 
time. This proves part (b). Part (c) follows immediately from (a) 
and (b). 1 
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