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Abstract 

.mis paper examines the problem of choosing optimal resource consumption from an 
imperfectly observable aggregate capital, wealth or resource stock which the decision-maker 
learns about over time. Learning is complicated by the fact that the planner receives 
information about an object (the true resource stock) which is a moving target. Under the 
assumption that the utility of zero consumption is --m we show that the optimal policy 
follows a completely deterministic ‘cautious’ or ‘minmax’ policy that assumes the worst in 
each period and optimizes against that. When this model is compared to a model with 
completely observable wealth levels the following insights are obtained: (1) there is 
‘over-saving,’ (2) investment and output processes are more volatile than consumption, and 
(3) regressions underestimate the risk aversion of agents. Information about the wealth or 
stock level is only valuable if it alters the support of the agent’s beliefs. Thus, information 
may be statistically informative yet economically valueless. If information changes the 
support of the agent’s beliefs then the optimal solution features an endogenous resource 
‘discovery’ process. 
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1. Introduction 

In many dynamic economic models agents must allocate a resource between 
consumption for the current period and investment for the future. In analyzing 
such problems it is typical to assume that each agent has perfect knowledge of the 
resources available at the time the allocation decision is made. In reality, there are 
many intertemporal resource allocation problems for which the true resource stock 
is not perfectly observable. 

For many individuals a major portion of their wealth is stored in their house. A 
precise value for this wealth can only be obtained when the house is sold. The 
prices of other homes on the market provide some information about a property’s 
value; however, since no two homes are identical such information will be 
imperfect. Similar uncertainty also applies to other forms of wealth such as art or 
antiques. ’ More generally, an individual’s total wealth is described by the present 
discounted value of all future income from physical and human capital. This 
human capital is inherently unobservable. Even if markets exist for capitalizing 
one’s future stream of wages, such human wealth cannot be determined without 
actually going to the market. 

The allocation of natural resources is another important problem where stock 
levels are unobservable. Oil and mineral resources are extracted from stocks about 
which our knowledge is uncertain and subject to change as new reserves are 
discovered. Fish and wildlife species are harvested from randomly fluctuating 
populations that can only be partially observed. Even though fisheries management 
agencies spend substantial sums of money to forecast resource stocks, confidence 
intervals of f 50% of the mean are prevalent (Clark and Kirkwood, 1986). 

Finally, aggregate measures of resources such as the money supply or capital 
stock are subject to imperfect measurement, yet this is not captured in aggregate 
models of economic growth. 

This paper examines the problem of choosing optimal consumption from an 
imperfectly observable resource stock which the decision-maker learns about over 
time. The problem of optimal consumption with an unobservable resource stock 
differs in a significant way from the recent literature on decision-making and 
leaming with an unknown, but jTxed parameter (e.g., Grossman et al., 1977; 
Freixas, 1981; McLennan, 1984; Walters, 1986; Easley and Kiefer, 1988; Kiefer 
and Nyarko, 1989; El-Gamal and Sundaram, 1993, and Huffman and Kiefer, 
1990). In the literature on learning with an unknown parameter, beliefs of the 
agent evolve over time, but the quantity over which there is uncertainty is 
constant. Hence, uncertainty is always being reduced over time. In our framework 
the learning process is complicated by the fact that the decision-maker is learning 

’ Baumol (I 986) provides an interesting discussion of the uncertainties associated with investment 

in art. 
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about an object (the true resource stock) which is itself a moving target. Since the 
resource stock may evolve according to a stochastic transition equation, perfect 
knowledge of the true resource stock at one point in time does not imply the true 
stock is known at all future points. 

In this paper we focus on a one-good stochastic growth model. The model 
encompasses a number of important problems in the theory of economic growth 
and natural resource economics, and is widely used in the study of individual 
consumption/saving behavior. The agent’s beliefs about the initial wealth or 
resource stock are represented by a prior probability distribution. At the end of 
each period the agent receives an information signal about the true wealth level. 
Learning by the agent is specified in the standard way using the operator defined 
by Bayes’ Rule. 

We begin by imposing the interiority condition that the utility of zero consump- 
tion equals --co. First, we examine the case where the agent receives no informa- 
tion signals about the unobservable stock. In Section 3 we show that the optimal 
policy for the problem with unobservable resources and learning is identical to the 
optimal policy under an associated problem that is completely deterministic and 
easily characterized. The decision-maker assumes the initial stock is the lowest 
among those entertained under the prior beliefs and that the worst shock to 
production occurs in each period. The agent then optimizes against this ‘cautious’ 
or ‘mimnax’ deterministic problem. The optimal&y of minmax behavior holds 
under general conditions and does not require any assumptions of concavity on 
utility or the production function. 

This rather striking result implies that well-known solutions to deterministic 
models can be used to characterize the behavior of optimal policies for the 
problem with unobservable wealth levels. The implications are examined in 
Section 4. For example, in the standard deterministic growth model it is well-known 
that optimal consumption and resource stocks converge to a golden rule steady 
state. With unobservable resources a form of over-saving occurs and with proba- 
bility one the true resource stock eventually becomes bounded away from the 
golden rule stock that determines optimal consumption. This result may be of 
interest given empirical findings of old-age over-saving behavior. A second 
implication of minmax behavior is that optimal output and investment are much 
more volatile than consumption. Optimal consumption solves a deterministic 
‘cautious’ or ‘mimnax’ problem and, hence, consumption is not random. On the 
other hand, output and investment vary randomly due to the stochastic shocks to 
production. Finally, we note that an econometrician who does not account for the 
presence of incomplete information may underestimate the agent’s coefficient of 
relative risk aversion, This may be germane to the controversy over the equity 
premium puzzle discussed by Mehra and Prescott (1985). 

Sections 5 and 6 extend the analysis to situations where, in each period, agents 
receive information signals about the unobservable stock or wealth level. If the 
information signals do not change the support of the agent’s beliefs (e.g., normally 
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distributed signals) then the results of Sections 3 and 4 generalize immediately. If 
information increases the minimum of the support of beliefs over stock levels, then 
the optimal solution is the same as that of an associated deterministic problem that 
features an endogenously determined ‘discovery’ of new resources on the part of 
the agent. This provides a more realistic representation of many problems where 
the known stock or wealth is augmented over time by discoveries that may depend 
on previous consumption levels. 

The crucial assumption used in obtaining our results is that the utility of zero 
consumption equals minus infinity. In a representative agent model, the assump- 
tion may be based on an equivalence between zero consumption and non-survival. 
In other settings it implies an absolute aversion to bankruptcy. Such absolute 
aversion may occur due to social stigmas or an extreme fear of being left with no 
resources in old age. The assumption holds for many popular utility functions used 
in the literature including the log utility function and the class of all constant 
relative risk aversion utility functions with coefficient no less than one. * A natural 
question to ask is: what happens when this property does not hold? In Section 7 
we show that an agent either behaves as if he/she satisfies this property or else 
the agent becomes bankrupt in finite time with strictly positive probability. 

The final section of the paper extends the Hall (1978) consumption model to 
include unobservable wealth levels. Under somewhat more restrictive conditions 
agents exhibit minmax behavior in this model as well. 

There is some previous work that examines problems similar to the one in this 
paper. Kemp (19761, Robson (19791, Bhattacharya (19821, and Quyen (1991) all 
focus on with the problem of allocating an exhaustible resource when there is 
learning about the stock. In fact, Kemp (1976, footnote 7), refers to the potential 
for min-max behavior, but he does not provide a formal analysis, nor does he 
examine the economic implications associated with such behavior. The other 
papers rely on frameworks that differ substantially from that used here. In other 
work, Majumdar (1982) proves the existence of stationary optimal policies under 
certain continuity and compactness conditions. Using specific functional forms on 
both technology and preferences, Clark and Kirkwood (1986) examine the value of 

* Such utility functions am often used in applied work (and am frequently the only utility functions 
for which explicit solutions are available). Arrow (1971) explains theotetically that the coefficient of 
risk aversion, r, should be around unity. Kydland and Prescott (1982) show that values of r between 
one and two best explain aggregate investment and output data. Tobin and tilde ( 197 1) use r = 1.5 in 
a life-cycle savings model. The CRRA class of utility functions is the preeminent class used in 
theoretical and applied finance. In this regard, Rubinstein (1976) lists ten desirable properties of the 
(generalized) log utility function. The assumption is strictly a local condition and outside some 
arbitrarily small neighborhood of c = 0 tbe utility function may be any continuous function that is 
desired. For positive consumption the Euler conditions will be. determined outside this small neighbor- 
hood of the origin. 
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stock surveys when the objective is to maximize the expected discounted sum of 
consumption. 

2. The unobservable resources problem Pl 

Let y, 2 0 be the stock of resources available at date t (t = 0,l ,...I. The agent 
does not know the exact value of y,. The agent’s beliefs about y, are represented 
by the prior distribution CL,, a probability measure on the non-negative real line. 
The agent receives utility in each period from consuming an amount, c,. Since the 
stock of resources is not necessarily known by the agent it is possible in principle 
that the agent will attempt to consume more than the available resource stock. It is 
convenient to interpret c, as ‘attempted’ consumption. If the agent attempts to 
consume an amount c, > y, then the ‘attainable’ consumption of the agent is yr. 
Later we shall characterize when attempted consumption is always less than the 
true stock level. In such cases, the distinction between attempted and attainable 
consumption becomes irrelevant. Formally, however, we shall always consider c, 
to be ‘attempted’ consumption and min(c,, y,) to be ‘attained’ consumption. 

A consumption of c, 5 y, results in an investment of x, = y, - c,. If c, > y, 
then investment is x, = 0. Given an investment x,, the next period stock -is 
y,+, =flx,,r,+,)wheref:%+X[a,b]-+‘8+istheproductionfunctionand rl+, is 
the realization at date t + 1 of an unobserved independent and identically dis- 
tributed process (r,)T= 1 which takes values in some compact interval [ a,b] and has 
known marginal distribution r. The return that the agent receives at date t is 
denoted by R(c,,y,) = u(min{c,,y,]) where u:%++ ‘3 is a utility function of 
‘attainable’ consumption. When c, s yI this reduces to the standard optimal 
growth model where R(c,,y,) = z&c,). 

Beliefs about the date t + 1 stock, y,+ ,, are obtained from the prior CL, by 
taking into account both the date t consumption level, c,, and the production 
function f. Let PC%+> be the set of all probability distributions on the non-nega- 
tive real line. The mapping from consumption and beliefs at date c into the beliefs 
about the date t + 1 stock is denoted by F:‘3l+xP(%+) --) PC‘%+>, where 

F(c*V%)(A) = I%+q(C+rIf(Y,- min{cVYJ,+J) EAJ)CL@Y,) 

(2.1) 

for each (Bore1 measurable) set A in LR+ and for each (c,,& E 8+X P(%+ ). 
Before consumption is chosen at date t, the observable history consists of the 

vector of past consumptions and previous beliefs. Any such vector is referred to as 
a partial history at date t and is denoted by 

[ 

t- 1 

4 = {( t%.%) “.“(CLt-,rCt-,).CLt}E i~w+)x~+ 
1 

XP(S+). 

(2.2) 
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The elements of h, obey the updating relationship (2.1). A dare t policy is any 
(Bore1 measurable) function c, = ?r,(h,) which specifies the date t consumption as 
a function of the partial history h, (where the set of measures on the non-negative 
real line, PC%+>, is endowed with the weak topology of measures). A policy 

r = h,,;= 0 is any collection of date t policies for t = O,l,... A policy T and 
initial prior p0 result in a sequence of partial histories {h,}T_,. Define P, as the 
probability measure induced on the partial histories by the policy T and initial 
prior cc,. 

A consumption process {c,}FsO is called a measurable process if for each t, 
c, 2 0 and c, depends (measurably) only upon the partial history at date t. It 
follows that any policy results in a measurable consumption process. Of course, if 
{ y,)T= 0 is the stock process corresponding to some policy, then in some periods an 
unattainable consumption level, c, > yr, may be attempted. A measurable con- 
sumption process which satisfies c, 5 y, with P,-probability one for all t is called 
an attainable consumption process. This is equivalent to c, 5 min(y E Supp p,) 
for all t. The associated policy is called an attainable policy. 

Given any date zero prior pO, a policy T results in a sum of discounted returns 
given by 

V,( ~4 = E,,~~~~u(minIc,,y,}), (2.3) 

where S E (0,l) is the discount factor. Since the (c,,/.$=~ process is stochastic, 
expression (2.3) takes expectations, E,, at date zero, where the expectations are 
those corresponding to P,,, the probability induced by initial prior p,, and policy T 
(consult Blackwell (19651, for details on this). A policy T * is optimal if 
V, * ( pO) 2 V,( pO) for all policies T and all date zero prior beliefs p,,. The value 
function is defined by V( pO> = Supp,V,( pO) where the supremum is taken over 
all policies, 7r. 

The agent’s problem of choosing a policy to maximize the expected sum of 
discounted returns is referred to as Problem PZ. The optimal policy (when it 
exists), satisfies the functional equation: 

V( p) = max..&,[4min(c,y)) + aV(P(c+))]. (24 

2. I. Assumptions 

We impose the following assumptions on the model. Each of these assump- 
tions, except possibly (R.11, are standard in the literature. 
R.l. R(O,y)= -mforall y~0,andgivenanysequence{c”,y”),,~,~~+X~+ 

which converges to (O,y), NC”, y’) converges to - a. 
R.2. R( c, y) is continuous at each (c, y) such that c > 0. 
f.1. fl XJ) is continuous in x and r. 
f.2. fiO,r> = 0 for all r and flx,r) > 0 for all r and x > 0. 
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f.3. flx,r> is strictly increasing in x for fixed r. 
f.4. There is an x > 0 such that for all x E (0,x) and for all T, A.xJ) > x. 
f.5. There exists-a 2 > 0 such that for all x r’lx and for all P-, j7 XJ) < x. 

Under (R.l) it may be possible for all policies starting from positive initial 
stock levels to lead to a sum of discounted returns equal to minus infinity. 
Assumption (f.4) is a ‘productivity’ assumption on the production function which 
requires that the production function lie above the 45 degree line in a small 
neighborhood of the origin. It implies that a fixed positive consumption level can 
be sustained from any arbitrarily small initial stock. This rules out the value 
function being unbounded below from strictly positive stock levels. Assumption 
Cf.51 has the consequence of bounding the set of possible stock levels from above. 
In particular, it is easy to show that under (f.1) and (f.5) if y0 is the initial stock 

and {y,};s,, is the stock process resulting from any policy then for all c 2 0, 
y, < max { y,,X}. Both Cf.41 and Cf.51 are standard in the optimal growth literature. 

Since the quantity X in (f.5) can be made arbitrarily large, we assume that the 
support of the agent’s beliefs about the date 0 stock level lies in the set [0,X]. This 
imposes little loss of generality since the agent knows that the stock level will 
become less than Z in finite time, even if no consumption takes place at any date. 
We also assume that the initial beliefs of the agent are bounded away from zero. 
Without this assumption it is possible that, under (R.11, the value function equals 
minus infinity and any policy is optimal. Since x in assumption (f.4) can be made 
arbitrarily small, we shall take this to be a lc%er bound of the support of the 
agent’s initial beliefs. To summarize, we assume 

B.l. The support of the prior beliefs on the initial stock, p.,, is some subset of 
the set [x,X]. 

We always implicitly assume that the true initial stock lies in the support of the 
initial prior distribution of the agent. All results in the paper are stated ‘with 
P,-probability one’. If the initial stock lies outside of the support of the prior 
distribution the agent may observe events which were previously assigned zero 
probability and P,-probability one sets may have no relationship with probability 
one sets of an outside observer who knows the value of the initial stock. In this 
paper we do not provide a theory of how an agent might behave under such 
situations (but see Nyarko, 1991, for a discussion of this very issue). 

3. Optimality of minmax behavior 

We proceed to show that under (R.l) the agent behaves very ‘cautiously’ and 
that the optimal solution with unobservable resources also solves a ‘minmax’ 
deterministic optimal growth problem with: 
1. an initial stock equal to the lower bound of the agent’s prior beliefs, y0 = min 

Iyr Oly E Supp CL,& and 

2. a deterministic production function equal to the original production function in 
the worst state, Ax>= min, flx,r>. 
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In other words, the agent exhibits a sort of minmax behavior, assuming the worst 
possible stock level and the worst shock to production at each date and optimizing 
against that. This ‘minmax’ or ‘cautious’ deterministic problem is stated below as 
Problem P2. (Problem Pl is the general problem with unobservable stocks 
presented in Section 2.) Consider an initial stock level y > 0 as given. 

Problem P2. maxt,,) Z,w_OStR(~,,y,) s.t. 0 < c, < y, for all t r 0 where y, = y, 
y,, , = fi y, - ct> for all t r 0, and .I( X> = min, fl~,r>. The significant characterii- 
tic of Problem P2 is the absence ofany uncertainty. The agent simply assumes the 
worst with certainty. 

That optimal consumption with unobservable resources is equivalent to optimal 
consumption in a deterministic problem may seem surprising; however, the 
rationale is relatively straightforward and follows immediately from two observa- 
tions given below as Proposition 3.1 and Lemma 3.2. First, any policy that is not 
attainable leads to zero consumption in the next period with positive probability. 
Under (R.l) zero consumption in any period results in utility of minus infinity. 
Hence, any optimal policy for the unobservable resources problem must be 
attainable. Second, any consumption process that is attainable for the unobservable 
resources problem must be feasible for the ‘minmax’ deterministic problem. 
Together these two observations imply that the search for optimal policies for both 
problems Pl and P2 can be restricted to the same set of consumption policies. 
Since problems Pl and P2 have the same utility function they must have the same 
solutions. We now proceed with the formal analysis. 

Proposition 3.1. If T is an optimal policy from some initial prior pO then T is 
attainable. 

Proof of Proposition 3.1. Let {c,,p,)~xo be the consumption and posterior beliefs 
processes generated by r. Define 2f = min( y E Supp p,}. Suppose that at some 
date t, the ‘attempted’ consumption level c, is not attainable. Then c, > 1,. From 
definition of a, this implies that under the agent’s beliefs there is be a strictly 
positive probability that the stock level will be depleted at date t. From (f.2) this 
implies that with strictly positive probability from periods t + 1 onwards the 
resource stock and consumption levels will be zero. Under (R. 1) this will result in 
a utility of --03. Under assumptions (f.4) and (B.l) the agent can choose an 
attainable policy that yields finite utility at each date. Hence, an agent who 
satisfies (R. 1) will not choose an unattainable policy, since such a policy gives an 
expected total return of - 00. This implies that an optimal policy is attainable. 0 

Lemma 3.2. Let {c,}Tx O be an attainable consumption process for the unobservable 
resources Problem PI with initial prior t+,. Then {c,}T=, is feasible for the 
deterministic ‘minmax’ Problem P2 with initial stock JJ, = min{ y E Supp p,,}. In 
other words, for all t on each sample path, 

O<c,~&:,where~+, =f(z-c,). (3.1) 
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Proof of Lemma 3.2. Let (c,,&+ be the consumption and posterior beliefs 
processes generated by some attainable policy from initial prior pO. An induction 
argument now proves both (3.1) and 

a = mini Y E WP CL,). (3.2) 

Fix any sample path. From the definition of JJ, (3.2) holds for t = 0. Since the 
consumption process is attainable by assumption, this implies that c, 5 zO. Hence, 
(3.1) holds for c = 0. 

Next, suppose that (3.1) and (3.2) hold for some date t. If y, and y,, , are the 
true stock levels at dates ? and t + 1 respectively, then y,, , = f(y, - c,,r,+ r> 
where T,+ , is the unobserved realization of the shock to the production function at 
date t + 1. Under the induction hypothesis, the lower bound of the support of the 
distribution of y, is &. Hence, the lower bound on the support of beliefs over y,, , 

is min,,+ I 8~~ - w,+,)=&J-c,)=&+l and (3.2) holds at date c + 1. Since 
the consumption process is attainable, c,+ , 5 11+, and (3.1) holds at date t + 1. 
By induction, (3.1) and (3.2) hold for all t. [7 

Together, Proposition 3.1 and Lemma 3.2 lead to our main proposition on the 
behavior of optimal policies. 

Proposition 3.3. Fix any initial prior pO and define zO = min { y E Supp pa). Then 
the consumption process {c,>y=,, is optimal for the optimal growth problem with 
unobservable stocks and initial prior pO (i.e., Problem Pl), if, and only if, it is 
also optimal for the ‘minmax’ deterministic optimal growth problem with initial 
stock yO and production junction f (i.e., Problem PZ). 

Proof of Proposition 3.3. Fix any initial prior p0 and let y0 = min{ y E Supp ccc}. 
Define Pt to be the set of all consumption processes, {c$_,, that are attainable 
for Problem Pl. Define P[ to be the set of all consumption processes that are 
feasible for Problem P2 from initial stock level zO. Proposition 3.1 implies that any 
optimal consumption process for problem Pl lies in Pt. Hence, in obtaining 
optimal consumption processes for Problem Pl it suffices to optimize over Pt. 
From Lemma 3.2 it follows that P,A c P[. It should be obvious that P: c Pt. So 
Pt = PT. Further, the objective functions in both Problems Pl and P2 are the 
same (i.e., defined via u, the utility function). Since the two problems have the 
same objective function and the same relevant constraint set, they must have the 
same optimal solutions. This proves Proposition 3.3. 0 

4. Implications of minmax behavior 

4.1. Dynamics and over-saving 

We now review some well-known results for the optimal growth Problem P2 
with deterministic production function, A xl = min, fl x,r), and observable stocks. 
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To aid in characterizing the behavior of optimal processes we impose standard 
concavity assumptions on the utility and production functions, and an Inada 
condition on the production function. 
R.3 The utility function u(c) is increasing and strictly concave in c. 
f.6 The production function flx,r) is strictly concave in x for each r. 
f.7 lim,,, f’(x,r) = m and lim,,, f(.r,r) < 1 for each r, where I’ is 

the derivative of f with respect to X, which is assumed to exist at each x > 0 
and to be continuous at each ( X, r) with x > 0. 

The golden rule input, x8, output, y,, and consumption, c,, for the minimum 
production function, J are defined by 

(4.1) 

where 6 is the discount factor. Under assumptions (R.l)-(R.3) and (f.l)-(f.71, it 
is well known that the optimal input, output and consumption processes for 
Problem P2 converge to their golden rule values. Proposition 3.3 then implies that 
the optimal consumption process for the model with unobservable stocks, Problem 
Pl, converges to the golden rule consumption level, cg , of the production function f. 

These facts enable us to examine the evolution of the true resource stock level 
in Problem Pl with unobservable stocks. To rule out trivialities it is necessary to 
assume that the agent’s initial prior is non-degenerate (i.e., its support contains at 
least two points) and that the true stock level is not equal to the minimum of the 
support of the agent’s prior beliefs. Under these conditions, an optimizing agent 
exhibits a strong form of over-saving relative to the stochastic optimal growth 
problem with production function, flx,r), and observable stock levels. 

This is most easily illustrated by examining the case where the production 
function is deterministic. Fig. 1 shows a typical production function fix) along 
with the mapping y,, , =fl yt - c,), where c, is the golden rule consumption 
level. At yI = ys, this mapping has slope f( ys - cs> = l/S > 1, cutting the 45” 
line from below. It also has an upper fixed point denoted by y * . Suppose the 
agent solving Problem PI with unobservable stocks has a prior whose support is 
any non-degenerate interval with lower bound y,. Because this is the golden rule 
stock for the deterministic Problem P2, the optimal policy for an agent solving 
Problem Pl is to consume c, in each period. Hence, the behavior of the actual 
stock is governed by the mapping y,+ 1 = fl y, - cg 1. From Fig. 1 it is clear that if 
the true initial stock is y,, > ys, then the optimal resource stock converges to y * , 
the greater fixed point of the mapping y,+ i = fc y, - c, 1. The agent behaves as if 
the stock level is ys and chooses consumption equal to cs in each period, even 
though the true resource stock approaches y* over time. While the agent knows 
that the true stock converges to y * with probability one, the agent does not know 
exactly how close to y’ the true stock is at any given date. In each period the 
support of the agent’s beliefs has a lower bound at ys, and over time the support 
of the agent’s beliefs tends to the set [ y,, y * I. Since there is a very large penalty 
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C6 Y& Y’ Yt 

Fig. 1. 

to making a mistake under (R.11, the agent behaves very cautiously and always 
chooses the minmax golden rule consumption. 

Relative to the true resource stock the agent is consuming too little and saving 
too much in every period. This over-saving is a general phenomenon that also 
holds in models with stochastic production functions, flx,r), under assumptions 
(R.3), (f.6), and (f.71, where the initial prior is any non-degenerate prior. Define 
fix)= max, flx,r> and let y* and y* * be the largest fixed points of the maps 

y,+l =AY,-c,) and Y,+I = f( y, - c, ), respectively (see Fig. 2). Observe that ys 
is the smallest fixed point of the map y,+ , = $ y, - c, 1. Again, suppose that the 
true stock level is not equal to the minimum ?rf the support of the prior beliefs. 

For the cautious or minmax problem the optimal consumption converges to the 
golden rule level cg. By Proposition 3.3 this is also the limit of the optimal 
consumption process for the unobservable resources problem Pl. For problem Pl 
the true stock eventually enters and remains in the set [ y * , y * l I. Once again there 
is over-saving relative to the optimal growth problem with observable stocks. This 
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cs Y6 Y’ Y” Y, 

Fig. 2. 

discussion is formally summarized in the following proposition whose proof is 
given in the appendix. 

Proposition 4.1. Assume CR.1 -R.3), ($I-571, and (B.I), and suppose that the 
initial prior t.+, is non-degenerate and that the true stock is not equal to the 
minimum of the support of the prior beliefs. If (c,,p,, y&,, are the optimal 
consumption process, the associated process of posterior beliefs, and true re- 
source stocks, then lim, _ m c, = c,, lim, _ m mini y E Supp p,) = ys, and with 
probability one the true resource stock enters the set [ y * , y l * I and stays there 
forever. 

Remark 1. The limiting value of the difference between actual stocks and the 
golden rule stock is at least K = ( y * - ys). This provides a lower bound on the 
long-run ‘excess saving’ of the agent no matter how small the uncertainty about 
the initial stock. The agent may believe the initial (date 0) stock level lies in the 
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set [ y, y + ~1, with l > 0 arbitrarily small. Proposition 4.1 implies that the limiting 
value of the ‘excess saving’ is at least K, regardless of the value of E > 0. 

Remark 2. Using the techniques of Majumdar et al. (1989) it is possible to 
show that the true stock process { y,}T_-o converges in distribution to a unique 
invariant distribution (or stochastic steady state) with support in [ y * , y * * I. 

Remark 3. The assumption that the true stock is not equal to the minimum of 
the support of prior beliefs may be relaxed if the production function is stochastic 
(i.e., if there does not exist an x > 0 such that flx,r> =flx,r’) for all r and r’). 

Remark 4. It should be clear that similar types of over-saving behavior will be 
observed in a finite horizon version of the problem. Many empirical studies of 
agents’ life cycle saving behavior have documented the phenomenon of over-sav- 
ing of older agents (e.g., Mirer, 1979 or Danziger et al., 1983, or the literature 
surveys by Modigliani, .1988 or Kotlikoff, 1988). Further, some studies (e.g., 
Hurd, 1987) show the bequest motive is unimportant in explaining such behavior. 
While we do not claim that agents behave in strict accordance with the assump 
tions of this paper, the intuition offered by Proposition 4.1 is suggestive that some 
over-saving behavior may be associated with incomplete information over wealth 
levels. 

4.2. Output and investments are more volatile than consumption 

In the standard stochastic optimal growth model with observable resources 
(e.g., Brock and Mirman, 1972), optimal consumption is typically a monotone 
(and sometimes linear) function of the stock level. This implies that consumption 
closely follows movements in contemporaneous output and investment and has 
similar measures of variability. For example, if consumption, output and invest- 
ment are linearly related, then their coefficients of variation are equal. On the 
other hand, empirical studies have typically found that the time series of consump- 
tion is relatively smooth compared to investment and output (e.g., Kydland and 
Prescott, 1982, Table 4, p. 1365). 

Under Proposition 4.1, the limiting variance of the consumption process is zero. 
At the same time, the output process converges to a limiting distribution with 
non-trivial support and strictly positive variance. Thus, the optimal growth prob- 
lem with unobservable stocks and learning yields a model where the time series 
behavior of consumption is much less volatile than investment and output. 

4.3. Underestimation of risk aversion 

Assume that the agent has a constant relative risk aversion (CRRA) utility with 
coefficient, I’; i.e., u(c) = c’- ‘/<I - r> for r> 0 but different from one, and 
u(c) = ln( c) for r = 1. To maintain (R. l), we assume that if 0 < I’ < 1, utility is 
CRRA except for some arbitrarily small neighborhood of 0 in which the utility 
function satisfies (R.l). This assumption is unnecessary if rr 1 and otherwise 
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imposes little loss of generality since consumption is typically uniformly bounded 
away from zero. For simplicity, suppose the production function, Ax), is some 
strictly concave deterministic function of investment. 

Now, suppose the agent is solving a problem with incomplete observation of 
wealth levels, but that the econometrician assumes the agent is solving a standard 
optimal growth problem and that realized asset values enter the econometrician’s 
information set. The latter may occur when there are lags between agents’ 
decisions and the revelation of asset values. The Euler condition for the econome- 
trician is: 

r+,) = VtQ+1+, > or r= ln( VT -x,))/ln( c,+ ,/c,) t (4.2) 

while the agent’s Euler equation is given in terms of the minmax consumption and 
investment processes generated according to Proposition 3.3. 

Consider the situation where consumption is increasing over time, as occurs in 
most of the post-war U.S. aggregate consumption data. Under increasing consump 
tion, ln(c,+ ,/c,> > 0. Since A.> is strictly concave and the true investment is 
larger than the minmax investment, an econometrician who estimates r will 
calculate a smaller value of f(x,> than the agent. From (4.2) this will cause the 
econometrician’s estimate of r to be smaller than the agent’s true coefficient of 
risk aversion. 

This suggests that unobservable wealth may offer some insight into the equity 
premium puzzle of Mehra and Prescott (1985). They show that a standard optimal 
growth model with CRRA utility model cannot explain the high return on equity 
relative to the return on risk free assets in post-war U.S. data under reasonable 
values of the model parameters. However, they mention that ‘with large r 
virtually any pair of average equity and risk-free returns can be obtained’ (p. 154). 

5. Information signals 

5.1. The information or signals process 

In this section the model is expanded to allow for learning on the part of the 
agent. We now suppose that after the agent chooses a date t consumption level c,, 
the agent receives a signal, s,, that provides information about yZ, the stock of 
resources at the beginning of date t. For example, at the end of the period the 
agent may receive a noisy measurement of the resource stock, s, = y, + v,, where 
7, is an independent noise term with mean zero. We assume that the set of 
possible realizations of the signal lies in some subset of a finite dimensional 
Euclidean space, denoted by S. The conditional probability of the signal given y 
and c is P(ds1 y,c). This formulation allows there to be no signals in which case 
P(dsl y,c) is independent of ( y,c). The objective of the agent is the same as 
described in Section 2 above; however, when making the date t consumption 
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decision the agent now has information on the history of all signals up to that date, 

{s 0,. . - 9 s,_ ,I. 
There are now two steps required to obtain the agent’s beliefs about the date 

t + 1 resource stock, given the agent’s date f beliefs, actions and signals. First, the 
agent revises his/her beliefs about the date t stock level, y,, conditional upon the 
observed signal s,. This step is the standard Bayesian updating. Denote the 
posterior distribution on yI given the signal s,, the action c,, and prior distribution 
CL/-(%+) by 

P;=%,c,tP,LI) (5.1) 

where B:Sx%+xP(%+)+P(%+) is the Bayes’ Rule updating formula. If the 
conditional probability distribution P(ds,l y,,c,) admits a density function 
p(s,l y,,c,) then Bayes’ Rule is such that for each (Bore1 measurable) subset A of 

s+, 

P;(A) =B(s,,c,d(A) = 
/A P(Sr~YtJrMdYr) 

h, ~(hddbd * (5.2) 

The second step of the updating process involves the mapping F defined in 
(2.1) where the consumption level, c,, and the production function, fl XJ), are 
used to transform $, into updated beliefs about the period t + 1 resource stock. 
Together, these two steps define a mapping from the date t beliefs, consumption 
and information signals into beliefs about the resource stock at date t + 1 given by 

or+ I = F(c,Jhw,)). (5.3) 

We now illustrate the mappings F and B in an explicit example. 
Example 5.1. (The mappings F and B). Let N(m,u) denote the normal 

distribution with mean m and variance u. Suppose the agent has a prior over the 
date t stock, y,, which is N( Y,,u,*> and that the production function is linear with 
flx,r) = kx + r where k is a constant and the shock term, r, is N(O,u,*). (We 
ignore the fact that this means that stock levels may be negative; this example is to 
illustrate the updating only.) Let the information signal be given by s, = y, + 7, 
where 7, is N(O,l). When the agent chooses action c, and the signal s, is 
observed the posterior distribution on y, is given by CL: = B(s,,c,,~,) = N($u,‘*), 
where 

r; = ( y, + u,*s,)/( 1 + c,‘) and a;* = a,*/( 1 + a,*). (5.4) 

The posterior distribution of y,, , is CL,+, = F(c,,$,CL:) = N(Yl+ ,,u,,‘+ I)r where 

5,+ I = k( jJ; - cr) and u,,: , = k*u,‘* + a,* (5.5) 

with y; and a,’ defined as in (5.4). 
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5.2. Model where signals do not change the support of beliefs 

We now assume that the information signal is such that the supports of the prior 
and posterior beliefs are the same: 

S.1. For all (s,c,p) E SX ‘8+X P(%+), Supp I_L = Supp B(s,c,p). 

If there are no signals or, equivalently, if the signals are uninformative, then (S.l) 
holds trivially. Information signals can be informative and still satisfy (S.l). This 
is illustrated in the examples below where not only does (S.1) hold, but, if y, = 7 
at each date t (so that we have a standard statistical inference problem), then in the 
limit the signals lead to complete learning of r. 

First we have the following: 

Lemma 5.2. Suppose P(dr( y,c), the conditional distribution of the signals, admits 
a strktly positive Lebesgue density function p(sJ y,c> on the real line (or the 
non-negative half-line) so that for any set A in S, P(s E Al y,c) = jA p(sly,c)ds 
with p(sl y,c) > 0 for all (s,c,y). Then (S.Z) above holds. 

Proof of Lemma 5.2. Under the hypotheses of the Lemma, Bayes’ Rule defines a 
posterior distribution over stocks conditional on the information signal such that 
for any set A in %+, 

B( s,c,/.L)( A) = 
/Ap(sly&@y) 

/w+ p(sly+(dy) ’ 

Since by assumption p(sl y,c) > 0 for all s and y, for any set A, p(A) > 0 
implies ~(s,pXAl> 0 (and vice versa). Hence, Supp p = Supp B(s,F)( A) for 
all s so (S. 1) holds. q 

Example 5.3.(Signals with additive error). Suppose the signals are given by the 
relation s, = y, + r], where q$ is independent of y, and has a density function 
J)(T) with e(n) > 0 for all 71 in (- 00,~). For example, 77 could be a normally 
distributed random variable. Then P(ds( y,c) admits a density function p(sl y,c) 
=@(s-y) h’ h . w K 1s positive for all s and y (and is independent of cl. Hence, 
from Lemma 5.2, 6.1) holds. 

Example 5d.(Signals with multiplicative error) Suppose the signals are given 
by s, = y, . qt where v, is independent of yr and has a density function I/J(~) with 
r)(q) > 0 for all 7 in (0,~). F or example, 7 could be a log-normally distributed 
random variable. Then P(dsl y,c) admits a density function p(sl y,c) = +,(s/y) 
which is positive for all s and y. Again, from Lemma 5.2, (S.l) holds. 
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5.3. Under (Xl) the optima&y of minmax behavior and its implications continue 
to hold 

In this sub-section we note that all of the results of Sections 3 and 4 continue to 
hold even when we allow the agent to receive information signals at each date, so 
long as condition (S.l) holds. First consider the optimality of minmax behavior 
discussed in Section 3. For Problem Pl with information signals obeying 61) the 
precise arguments made in Proposition 3.1 imply that any optimal policy is 
attainable. Similarly, Lemma 3.2 continues to hold under 6.1). The arguments in 
Proposition 3.3 then imply that the solutions to Problems Pl and P2 are identical. 3 
Thus, the over-saving result of Section 4.1 carries over to the model with 
information signals that obey condition @.I). In addition, consumption is more 
volatile than investment and output as in Section 4.2, and there is the possibility of 
underestimating the coefficient of risk aversion as in Section 4.3. 

5.4. Under (S.1) the value of information is zero 

We argued above that any solution to the optimal growth problem with 
unobservable resources and information signals obeying (S.l) is also a solution to 
the minmax problem P2 of Section 3. This result has the implication that the agent 
is not willing to pay any amount of money to receive additional observations of 
the signal. Under 6.1) the information signal does not change the behavior of the 
agent since it does not change the support of the prior distribution. Information is 
informative in a statistical sense but it is not economically valuable to the agent 
even though it may significantly reduce the posterior variance in the beliefs of the 
agent. To see this suppose the agent is offered the chance to observe a signal 
which is a noisy estimate of the stock level, s, = y, + 71,. where 7, is normally 
distributed with mean zero and variance of a,‘. No matter how small the variance 
of q the agent does not gain by observing the signal. 4 

This result can be compared with Blackwell’s Theorem (Blackwell, 1951) 
which states that a signal is statistically informative if, and only if, it is economi- 
cally valuable. Blackwell’s Theorem is not violated in our model for the following 
reasons. First, it is typically stated in terms of weak inequalities, i.e., a statistically 

3 In Problem PI the agent may observe information signals and in principle can use these signals as 

a conditioning device when the agent is indifferent between two consumption decisions (such 

indifference is possible in our model since we do not require strict concavity of the utility function in 

Section 3). To maintain the equivalence, an agent solving Problem P2 may similarly use a random 

number generator to obtain the same distribution of consumptions aud utilities. For both Problems Pl 

and P2 such randomizations are sub-optimal when the utility function is strictly concave. 

4 The agent will pay positive resources to observe a signal that is an observation of the true stock. 

Thus, in the example them. is a discontinuity of the value of information in the variance parameter at 

uqz = 0. 
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informative signal cannot make the agent worse off. Second, it normally requires 
finitely many actions and signals and uniformly bounded utility functions which 
we do not have here. 

6. Model with general informative signals 

6.1. Endogenous shocks and the resource discovery process 

We now examine the model with information signals without the restriction 
(S.l) that the signals have no effect on the support of the prior distribution. The 
main result is that the solution to the unobservable stocks Problem Pl is the same 
as the ‘minmax’ or ‘cautious’ optimal growth problem P2 with one modification; 
at the end of each period t in the ‘minmax’ optimal growth problem there is a 
discovery of resources, z,. The stochastic process defining the discovery of 
resources at the end of each period is precisely the increase in the minimum of the 
support of prior beliefs over stocks that results from the information signal. In 
essence, the agent has ‘discovered’ that the certain resource stock is larger than 
previously believed. This discovery process has a natural interpretation in models 
of natural resource economics where new information increases the size of the 
known resource stock (either mineral or oil reserves or the population of a 
valuable fish or wildlife species). It is also relevant to situations where agents 
reassess the value of assets based on outside information. 

We begin with some preliminary definitions. Recall that the production func- 
tion is of the form flx,r> where x is the input level and r is the realization of an 
independently and identically distributed process (r,}T= , . To analyze the problem 
with resource discovery it is useful to consider production functions with a more 
general endogenous (real-valued) shock process {z,>~_ ,_ The shock process is said 
to be exogenous if it is independent of the stock and consumption processes. The 
shock process is said to be emfogenous if the date t shock, z,+ ,, has a distribution 
that is a function of the history of consumptions, outputs and shocks at date t, 
({~~,yJ,f_~,{z~}f_ ,I, but is independent of the future values {{ci,yi]~_ ,+ ,,{z~)~=,+~]. 

We now define a general optimal growth problem with endogenous shocks. Let 
g:%+ X %+ + %+ denote a production function where g(x, z) gives the output 
produced from the input x when z is the realization of an endogenous shock 
process at some given date. Fix an initial stock y > 0. 

Problem P3. Optimal growth problem with endogenous shocks to production: 
max(,,~E(~~,,S’R(c,,y,)) s.t. Osc,~~y, for all tr0 where y,,=y, yI+, =g(y, 
- c,, z,+ , ) for all t 2 0 and the consumption level c, is constrained to be a (Bore1 
measurable) function of the date t partial history {{ ci, yi>i:d ,{ z,.}f_ 1, y,) and where 
the expectations are those with respect to the known distribution of the endoge- 
nous process. 

Problem P3 is a generalization of the optimal growth model with exogenous 
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shocks (e.g., Brock and Mirman, 1972) that allows the shocks to technology to 
depend upon past actions of the agent. In Problem P3 the beginning of period 
stocks are accurately observed and the agent knows the vector {I Ci. y,)fii ,{ z$f= ], y,) 
before the consumption at date r is chosen. The shock z,, , is observed after c, is 
chosen; however, the agent knows the probability distribution of the shock process 
conditional on the history of observations. 

We now return to Problem Pl, the model with unobservable resource stocks. 
Fix an initial prior, pO, and let T be any policy. This generates a sequence of 
consumptions, signals and posterior beliefs {c,,s~,/.L,}~=~. At the beginning of date 
t the agent has beliefs CL, about the beginning of date t resource level, yr. At the 
end of date I, after observation of the signal s,, the agent has beliefs B(s,,c,,p,) 
about the beginning of date t resource level, y,. Define the date t discovery, z,+ ,, 
to be the increase in the lower bound of the support of the posterior distribution at 
each date c associated with the signal observed at that date, i.e., 

z,+ l = [mint y E Supp B( s, 4, +,)}I - [mint Y E Supp p,}] 7 (6.1) 

where B(s,,c,,~,) is the posterior distribution on the resource stock (see (5.2)). 
Under (S.l), z, = 0 for all r. Below we provide examples that illustrate possible 
non-trivial discovery processes generated by (6.1). 

Example 6.1 (Signals with a&it&e error>. Let the signal received at date r be 
given by 

s,=y,+ql withSupp17,=[0,1], 

where Cn,}cP, ,, is an i.i.d. process independent of the stock levels. By assumption, 
the noise in the signal, q,, lies in [O,ll so observation of s, indicates to the agent 
that s, - 1 < yt s s,. Denote the lower bound of the support of ,CL! by &, After 
observing the signal s,, the lower bound of the support of the updated beliefs 
about yl is max{l(,s, - l} and the resource discovery is given by z,, , = 
hdp, - 01 - 2,. 

Example 6.2 (Signals with multiplicative error>. Let the signal received at date 
t be given by 

s1=y,-7& wifhsupp7&=[0,1], 

where {TJ}~_~ is an i.i.d process independent of the stock levels. By assumption, 
the noise in the signal, q,, lies in [O,l] so observation of s, indicates to the agent 
that 0 < s,/y, < 1 or y, r s,. Denote the lower bound of the support of CL, by 2,. 
After observing the signal s,, the lower bound of the support of the beliefs on yt 
is max{y,,s,} and the discovery of resource stocks is given by z, = [max{y,,s,)] - 2,. 

6.2. Optima&y of minmax behavior with resource discovery 

We now show that for the unobservable stocks problem Pl the agent chooses a 
consumption process that is also optimal for Problem P3 with a discovery process 
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generated by the initial prior pO. In particular, for the unobservable stocks 
problem an optimizing agent assumes that the initial resource level is the lower 
bound of the support of the prior distribution, pO, that production corresponds to 
the lowest output at each date, and that resource stocks are augmented by 
discoveries as defined in (6.1). Recall that AX> = min, f( X, r). 

Proposition 6.1. Assume (R.I-R.3), (fl-f.51, and (B.1). Fix an initial prior pO 
and let rr and {c,}~_~ be an optimal policy and associated optimal consumption 

process for Problem PI with unobservable stocks and information signals. Let 

{ z,}y_ , be the associated discovery process. Then {c,):_~ is also optimal for 

problem P3 with observable stocks with initial stock y, = min{ y E Supp IQ} and 

production function g( x,z) = 5 x + z) where f= min, f( x,r). 

The proof of Proposition 6.1 follows similar arguments to the proof of Proposition 
3.3, and is omitted. Note that Proposition 3.3 is a special case of Proposition 6.1, 
specializing to the situation where the discovery process is z, = 0 for all t. It 
should also be clear that, with obvious modifications, the implications of Proposi- 
tion 6.1 hold in a setting in which the agent receives information about the 
outcome of the random shock r, before making the consumption decision c,. 

7. Agents either minmax or they fail to survive with positive probability 

In this section we study the model where the assumption U(O) = - = does not 
necessarily hold. We show that an optimal policy is one of two types. The optimal 
policy is either consistent with minmax behavior as in Problem P2, or the agent 
chooses actions that lead to extinction of the resource stock and bankruptcy of the 
agent with strictly positive probability. Hence, agents most likely to be ‘alive’ 
(i.e., with positive resources) in the distant future will be either those with utility 
functions obeying (R.1) or those who exhibit the same type of minmax behavior. 

Proposition 7.1. Assume (R.21, (R.31, #I-$5), (B.I) and (XII. Let <c,>~=, be any 
optimal consumption process generated by an optimal policy IT. Then, either 
{ c,)T= O solves the minmax problem (P2) or it results in the stock becoming extinct 

with strictly positive P,,-probability in finite time. 

Proof of Proposition 7.1. Fix any optimal policy, rr. First, suppose that n satisfies 
the feasibility constraints of the associated minmax problem P2. The associated 
consumption process must solve Problem P2 (otherwise it could not be optimal for 
Problem Pl, whose objective function is the same as that of Problem P2). Now, 
suppose that rr does not obey the constraints of the associated minmax Problem 
P2. We argue that the stock eventually becomes extinct with strictly positive 
probability. To see this suppose the support of the prior, pO, is the set [~,31. If the 
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optimal policy violates the constraints of Problem P2 in the initial period (t = 01, 
this means that the optimal consumption c0 lies in the set [y,?]. This implies 
extinction of the resource if the initial stock level lies in the set [y,c,], an event 
which the agent’s prior assigns strictly positive probability. More-generally, one 
may show that under the optimal policy, if the constraints of the associated 
minmax Problem P2 are violated at some date with positive probability, then there 
will be extinction of the resource at some date with strictly positive probability. 
cl 

It is a straightforward exercise to construct examples that illustrate the possibil- 
ity of extinction of the resource when (R.l) fails to hold. 

8. The Hall model of consumption 

Thus far, the discussion has been in the context of a standard optimal growth 
model, Under somewhat stronger conditions the optimality of minmax behavior 
holds for the model of consumption and saving studied by Hall (1978) and many 
others. In that model, an agent has an initial wealth of Y, and receives labor 
income of w, at the beginning of each date r. Wealth saved at the end of date t 
earns a gross interest rate or appreciates by a factor of p,. Both ( p,}yX , and { w,]T= , 
are exogenous i.i.d. stochastic processes, with p, 2 1. Let Y, denote the wealth or 
asset holdings of the agent at the beginning of date t, after labor income has been 
received. Let c, represent consumption at date t. If the wealth level at each date is 
observable so that there is no learning, then the agent solves the problem 

maxtC,1EX,~=,6’u( c,), s.t. Y,+, = p,( Y, - c,) + w,+,,YO given. (8.1) 

Now, suppose that the asset levels, Y,, are unobservable. The interest rate, p,, 
and the labor income, w,+ ,, are either observable or else have known marginal 
distributions. Let p,, denote the initial prior on Y,, and let p, denote the date t 
beliefs about Y,. If the agent plans consumption of c, 2 0 the ‘attained consump- 
tion’ is min{ c,,Y,}. In each period the agent saves X, = Y, - min{c,,Y,} and the next 
period asset level is y,, , = p, x, + w,+ ,, where X, = Y, - min{c,,Y,}. The agent’s 
optimization problem is 

max(,l~E~~m=,G’u(min{c,,Y,}), s.t. Y,+, = p,x, + w,+ ,, Y, given. (8.2) 

If the production function is defined to be f( xI,r,+ ,) = pI x, + w,+ ,, where 
r r+ I = ( p,,w,+ ,I, then this model is very similar to that discussed in previous 
sections of the paper. The shock term, rr+ r, is now a vector, with possibly one or 
both coordinates observable. Assumptions (f.11, cf.31 and cf.41 still hold. Assump- 
tions (f.2) and (f.5) require modification. (f.5) was used to ensure that the value 
function is finite. To achieve the same effect we may replace (f.5) with (f.5’) Sp, 
is uniformly less than one with probability one. 
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Assumption (f.2) required that zero saving leads to zero output and consump 
tion in the next period. (R. 1) then implied that the agent would not choose to 
consume the entire stock in any given period. This reasoning does not carry over 
to the consumption/saving model if labor income is bounded away from zero 
since flO,r,) = w, > 0 and (f.2) fails. It is therefore necessary replace assumptions 
(f.2) and (R.l) with a stronger joint restriction on the distribution of labor income 
and the utility function. Let P(dw) be the distribution of labor income. Assume: 

(R.1’) /u( w)P(dw) = -=. 

Assumption (R.1’) holds if w has positive mass at w = 0 and u(0) = - m; 
however, it is important to note that this is not required for (R.l’) to hold. For 
example, suppose u(c) = - l/c and w is uniformly distributed on the interval 
[O,w’] where w’ is any arbitrary positive number. Then /c’u(w)P(dw) = 
I{‘(--l/w)(l/w’)dw=(l/w’)[-ln(w)]$= --. 

The ‘minmax’ problem is defined as follows. First, the agent supposes that the 
initial wealth level is the minimum of the support of beliefs over wealth, 
Y,, = min(Y E Supp pug}. Define p, = p, if p, is observed and define a to be the 
mfimum of or otherwise. Define wt analogously. With these definitions, the 
‘minmax’ optimization problem with observable asset levels is: 

Problem P2’. maxl,,lZ,~OS’~(~,) s.t. 0 5 c, I y, and y,+, = e,(y, - c,) + w,+, 
for all t20 with yO=xO. 

When (f.5’) and (R.l’) replace (f.2), (f.5) and (R.l) and condition (S.1) is 
maintained, it is straight-forward to extend the arguments of previous sections to 
show that any solution to (8.2) is a solution to Problem P2’ and vice versa. 

In this version of the consumption model an agent with unobservable wealth 
exhibits ‘over-saving’ in the same sense as in Section 4.2, however, the amount of 
‘over-saving’ may become arbitrarily large in the limit even when the initial 
ignorance about the asset level is small. To see this, let Y, denote the true date f 
asset level and let y, denote the ‘minmax’ asset level generated via Problem P2’. 
Denote the difference between the actual and ‘minmax’ asset level by A, = Y, - y,. 
Since p, r p,, the definitions of Y, and y, imply A,+, 2 p,A,, which in turn 
implies A, 2 [ 17i~0’pi]A,. If pr > 1 for all I and A,, > 0, then the difference 
between the actual and ‘minmax’ stocks tends to infinity, i.e., lim ~ ~ 3c A, = CQ. 

9. Concluding remarks 

The results of this paper show that when there is infinite disutility from zero 
consumption, the optimal consumption policy for the problem with unobservable 
resources and learning is identical to the optimal policy under an associated 
deterministic problem in which the agent exhibits a form of minmax behavior. 
When the agent receives information signals that change the support of beliefs, the 
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optimal policy is equivalent to a stochastic growth model with an endogenous 
resource discovery process. The intuition offered by the results is intriguing and it 
would be of some interest to develop an empirical analysis of these issues. Further 
investigation of agents’ behavior when (R.l) is relaxed also seems warranted. 
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Appendix A. Proof of proposition 4.1 

From Proposition 3.3, optimal consumptions for Problem PI are also optimal 
for Problem P2. Using well known results from the optimal growth literature, it 
follows that lim, ~ ~ c, = cs. By (3.21, if lt is the date t stock level associated with 
the minmax Problem P2 then zt = min{ y E supp CL,}. This implies that 
lim , ~ m min{ y E Supp CL!}= ys. We now show that with probability one the actual 
stock process enters the set [ y * , y * * ] and never leaves. First we need some 
definitions for which we refer to Fig. 3 for clarification. Since the map y,, 1 = 8 yl 
- cg) has two fixed points, for any E > 0 sufficjently small the map y,+ 1 =fl i, - 
cg - E) also has two fixed points. Recall that fix> = max, flx,r). Let y’ and y” 
be the smaller fixed points of the maps y,, , = 8 y, - cs - E) and y,+ , =fi y, - cg 
+ E), respecteely, and let y,* , y,* * be the larger fixed points of those two maps. 
Observe that f( ys - c, + E) > fl ys - c, > = ys so there exists a point, j’, such that 
y<ys andf(y-c,+E)>ys>y. 

The lower bound of the support of the posterior beliefs, y,, converges to the 
golden rule stock, ys. By assumption, the true initial stock is strictly greater than 
the lower bound of the support of initial beliefs. Hence, the actual stock level at 
each date exceeds the lower bound of the support of beliefs at that date so that in 
the limit the actual stock level is no less than the golden rule stock. (Under the 
conditions of Remark 3 following the statement of Proposition 4.1 this will be true 
from date 2 onward.) In particular, from some finite date onwards the actual stock 
level always exceeds y. Further, c, converges to c,. Without loss of generality we 
may suppose that for all t, 

(4.1.1) 
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Fig. 3. 

Now, suppose that the shocks to the production function are finite and ordered 
so that there is a ‘best’ shock which results in the highest output from each input 
level. In Lemma 4.1.1 below we show that there exists a finite number N such that 
if the actual stock level exceeds 3, and the best state occurs at least N consecutive 
times in a row, then the actual stock level enters the set ( y’,@~> and never leaves it. 
In Lemma 4.1.2 we show that on almost every sample path one can find a time 
when the best state does occur for N consecutive periods. Combining Lemmas 
4.1.1 and 4.1.2 implies that if the initial stock exceeds jj, then with probability one 
the true stock enters the set ( y’,~) and never leaves. From Eq. (4.1 .l> we may 
suppose the initial stock exceeds 7. In the remark following Lemma 4.1.2, we 
indicate that this conclusion does not depend on the assumption that the shocks are 
finite and ordered. 

In Lemma 4.1.3 we show that once the actual stock enters the set ( y’,~) it will 
enter the set [ y,* , y,* * ] in finite time and stay there forever. Since E > 0 is 
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arbitrary, this proves that the actual stock enters the set I y * ,y * * 1 and stays there 

forever. Lemmas 4.1.1-4.1.3 therefore complete the proof of Proposition 4.1. 

Lemma 4.1 .I. Suppose there exists a ‘best’ shock r-l such that for all x 2 0, 
f(x,r’) 2f(x,r) for all r, and Eq. (4.1.1) holds. Then there exists an N < x such 
that iffrom date r, the best state occurs for N consecutive periods, then y,+n > y’. 

Proof of Lemma 4.1.1. By definition of J, fi y - c, + E) > j, so that j > y”, With 

the aid of Fig. 3 it is easy to see that iterates of the map yI+ , =a y, - c, + E) 

from j; converge to y,* * , the larger fixed point of that mapping. In particular, 
there exists an integer N < = such that the N-th iterate of the mapping y,+ , = fi y, 
- cg + E) from y0 = j exceeds y’. The lemma follows immediately. 0 

Lemma 4.1.2. Suppose <r,}T=, is an i.i.d. process with Prob ({r, = r’l) > 0 for 
some realization r’. For any N < a, if we define the set B = (all sample paths 
such that there exists a r < ~0 with rTti = r’ for i = O,l,. . . , N - 11, then Prob 
(B)= 1. 

Proof of Lemma 4.1.2. For any J = O,l,. . . , define the set B, = {r,N+i = r’ for 
i = 1,2,. . . , N}. Let q = Prob ({r, =r’])>O.Thenfora?l J,Prob(B,)=qN>O, 
so using the independence of the sets B,, 

Prob(Uy=,B,)=l -Prob(nT=,Bj)=l-lim,,,Prob(n~=,B,’) 

= 1 - lim K*=(l -4N)K= 1, 

where B; denotes the complement of B,. The lemma follows from the fact that 
the set U TZa B, is contained in the set B. 0 

Remark. Lemmas 4.1.1 and 4.1.2 are needed to assert that from a stock level in 
excess of 5, on almost every sample path the stock level eventually enters the set 
( y',"> and stays there forever. Lemma 4.1.1 uses the fact that there is a ‘best’ 
shock that occurs with positive probability. This assumption is without loss of 
generality since the proof of Lemma 4.1 .I can be modified to show that there is an 
N < x and a set D of N-tuples of realizations of the shock process with 
ProMD) > 0 such that if the initial stock is J, and the N-tuple of shocks (r,, rZ, 
. . . . r-n) lies in the set D then y, enters the set ( y',=) and stays there forever. 
Lemma 4.1.2 can then be modified to show that on almost every sample path there 
exist N consecutive dates such that the N-tuple of shocks at those dates lies in the 
set D. 

Lemma 4.1.3. If y0 > y’ and Eq. (4.1 .I) holds, then along almost euery sample 
path the actual stock enters the set [ y,* , y,* * 1 in finite time and stays there 
forever. 
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Proof of Lemma 4.1.3. From an initial stock yO > y’. it is easy to see (refer to Fig. 
3) that iterates of the map y,+ , = fl y, - cg + E) converge to the point y,* * , while 
iterates of map y,+ , = J( y, - c, - E) converge to the point y,* . Note that the 
evolytion of y, is governed by the map y, + , = f( y, - c,, rl + , ) and the definitions 
of f and f and the assumption that c, lies in Cc8 - E,C& + E) for all I imply 
Ay,-c&4Sfly+ r ,, ,+ ,) s fi y, - c, + E); hence, y, enters the set 
[y,* , y,* * ] in finite time. It is clear that once the y, process enters that set it stays 
there forever. 0 
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