
File: 642J 225401 . By:BV . Date:23:05:97 . Time:14:46 LOP8M. V8.0. Page 01:01
Codes: 4133 Signs: 2411 . Length: 50 pic 3 pts, 212 mm

Journal of Economic Theory � ET2254

journal of economic theory 74, 266�296 (1997)

Convergence in Economic Models with
Bayesian Hierarchies of Beliefs*

Yaw Nyarko

New York University, 269 Mercer St. Rm 723, New York, New York 10003

Received March 2, 1995; revised August 12, 1996

I study a model where hierarchies of beliefs (the beliefs about the beliefs of other
agents, etc.) are important. I provide conditions under which optimal actions of
agents will converge to the Nash equilibrium of the model characterized by the
true, previously unknown ``fundamentals.'' The conditions are (i) a contraction
property on the best-response mappings and (ii) a mutual absolute continuity
condition on beliefs. Violation of (i) may result in an ``anything is possible'' result:
any stochastic process of actions is consistent with maximizing behavior and
Bayesian updating. Violation of (ii) may result in cyclical behavior of actions on
each sample path. Journal of Economic Literature Classification Numbers: C70,
C73, D81, D82, D83, D84. � 1997 Academic Press

1. INTRODUCTION

For long economists have known that the beliefs of agents in an economy
affect the outcomes in the economy. Not only that, it has also been
recognized that the beliefs that agents have about the actions and beliefs of
other agents are also important in determining the evolution of the economy.
Keynes, in a famous passage in the General Theory, likened professional
investment to a beauty contest where predicting the average opinions of
others is essential. Almost any comment about investor behavior on the
financial markets stress the importance of investors predictions of the
``market''��in particular, investors predictions of the average opinions
mentioned by Keynes.

Despite the obvious importance of the above to economics there has
been a very small literature on this topic. The extreme reliance of economics
on ``equilibrium'' (e.g., Nash equilibrium, common priors, etc.) where all
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agents have the same beliefs and know everything there is to know, rules
out the phenomena mentioned above, a priori! There are many who believe
that the ``infinite regress'' problem introduced by considering such ``average
opinions about the average opinions of others,'' makes these models
intractable. This paper contributes to a very small literature that tries to
explicitly model the issues mentioned earlier, and in particular to study
economies where such beliefs about beliefs may be important and to show
that such models may indeed be ``tractable.''

The contribution of this paper is twofold. First, a general formal model
is provided where the issues mentioned above may be studied. This draws
upon the work on hierarchies of beliefs of [1] and [20]. (See [23] for
more on the formal model and further references to this literature.) Second,
within the context of this fairly abstract mode, conditions are provided
under which over time the optimal actions of agents will converge to the
Nash equilibrium of the model under the true, previously unknown,
``fundamentals.''

One of the first papers to provide a convergence result in this literature
is [31] who studies the model of a continuum of firms facing uncertainty
about parameters of a fixed linear demand curve. Townsend proves that
over time there will be convergence to Nash equilibrium of the model
characterized by the true parameter values. [11] studies further the same
model and obtains the convergence result under much weaker assumptions.
In comparison to the work of this paper, the above very important papers
should be considered as examples. In particular, both papers exploit critically
the structure of the linear model of firm behavior to setup the model and
obtain all results.

This paper begins with an abstract model of an economy where all
agents have imperfect information about fundamentals in the economy and
the beliefs and actions of the other agents. Two notions of a type are
defined: A Savage�Bayesian type of an agent specifies that agent's utility
parameters as well as that agent's beliefs about the actions and beliefs of all
the other agents in the economy. This may be thought of as the most
``comprehensive'' notion of a type since it specifies ``everything'' required for
decision-making. A second notion of a type is a Harsanyi type. This is a
notion of a type that only specifies an agent's utility parameter and that
agent's beliefs about the utility parameters of other agents. This is a sparser
notion of a type since, among other things, it does not specify what that
agent believes about the actions of others. (This is the notion of a type
typically used in Game Theory, and in particular in [14], when talking
about a Harsanyi Bayesian equilibrium; hence its name. See [24] for more
on the various definitions of a ``type.'' The name ``Savage�Bayesian'' is of
course in reference to the axioms of [30], and the Bayesian updating these
axioms imply.)
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A contraction property on the best-response functions is identified. This
property is easily checked from the ``fundamentals'' of the model. For
example, in the model of firms studied in the papers of Townsend and
Feldman, this contraction property holds whenever the slope of the
demand curve is less than one in absolute value. Under this contraction
property each agent's optimal action may be stated in terms of her
``sparser'' Harsanyi type. With this, a martingale argument may be used to
conclude that the optimal actions of agents must converge to the Nash
equilibrium of the model characterized by the true underlying previously
unknown ``fundamentals.''

This paper is organized as follows: In Section 2, an ``example'' is
presented, which is essentially the model studied by Townsend and
Feldman. I sketch how the convergence result is obtained in the example
in three ``STEPS.'' In the main part of the paper I show how these
STEPS are generalized in the abstract model which may be non-linear and
multivariate (i.e., may have a vector choice variable.) In the Section 9
I indicate what could go wrong when the key assumptions are violated.
I show that a violation of the contraction property may result in an ``any-
thing is possible'' result where any stochastic process of actions consistent
with maximizing behavior, common knowledge of it, and Bayesian updat-
ing. I show by an example that a violation of the mutual absolute con-
tinuity condition may result in cyclical behavior of actions on each sample
path.

As regards the previous literature I have already mentioned the papers
[31] and [11]. [7] and [27] also study the ``example'' of the model of
firms. [5] and [17] also obtain results on the convergence of beliefs under
different assumptions. These two papers do not model the hierarchies of
beliefs of agents. Further, their results typically require that the space of
types be finite or countable and will in general fail if the set of different
possible types or beliefs of agents may be indexed by say the unit interval.
(In particular, if the type space is in ``canonical form'' where each agent
chooses a different play and each such play is pure (i.e., does not involve
randomization), then the Kalai and Lehrer assumptions require the type
space to be finite or countable. See [21] for details.).

The assumptions of this paper are more related to those of [15], [16]
and [22]. However those papers exploit the special structure of repeated
finite action games and would not work for the models studied in this
paper. The work of this paper complements the recent work on non-Bayesian
``learning,'' and in particular the literature on ordinary least-squares learning
of [8], [12] and [19]. This paper is the ``Bayesian Learning'' equivalent
of that literature. This paper is the multi-agent extension of the work on
single-agent Bayesian learning models of began by [6] and others. This
paper owes that literature an intellectual debt.
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2. A MOTIVATING EXAMPLE

Suppose that there is a set of agents indexed by the unit interval I=[0, 1]
and uniformly distributed along that interval. For technical reasons
suppose also that there are finitely many classes of agents within that interval
with all agents of the same class identical in all respects. Fix any date n. At
that date agent i must choose an output level yin . The aggregate output is
then yn #�1

0 yin di. The price of that output is determined via a linear
demand curve pn=:&;yn+=n , where : and ; are fixed parameters, ``the
fundamentals,'' and =n is the date n shock to the demand curve��a zero
mean unobserved random variable. Suppose that there is imperfect
information over the parameter :. The value of the parameter ; is common
knowledge. The cost to firm i of choosing the output yin is c( yin)=0.5y2

in .
The profit of firm i is then pnyin&0.5y2

in . Let Ein denote the date n
``expectations operator'' of agent i. The profit maximizing output of firm i
is then yin=Einpn=Ein:&;Einyn . Notice that to choose an optimal action
agent i must form a belief over both the fundamentals, :, and the (aggregate)
actions of other agents, yn . Hence, maximizing behavior of firms (written as
(MB)) implies the following:

(MB) yin=Ein:&;Ein yn . (2.1)

(The optimal output level should really be yin=Max[0, Ein:&;Ein Yn] to
ensure non-negative outputs of each agent. In this example this is ignored.
In the formal part of the paper, it will be shown that non-negative outputs
can easily be handled using the techniques developed here.)

Given any ``random variable'' x let Gnx denote the ``average opinion''
of x, i.e., the average of the date n expectations of agents over x, Gnx=
�1

0 (Einx) di. Integrating (2.1) over i implies that

yn=Gn :&;Gnyn . (2.1$)

When :=0 and ;=&1 in (2.1), yin=Einyn so we have the [18] beauty
contest problem where each agent seeks to forecast the average action of
all the agents. Note that the Nash equilibrium for this model is the action
yin=:�(1+;) for all i.

At the end of each period n agents observe the price level pn and update
their hierarchies of beliefs over %. At date n+1 they again choose actions
via (2.1) but with their revised hierarchies of beliefs. Suppose that the
above decision-problem occurs at each date n=1, 2, ... . Take the error
process [=n]�

n=1 to be independent and identically distributed with zero
mean and bounded first moment.

We shall suppose that the agents do not observe the aggregate output at
the end of the period. Hence, the learning problem facing agents is not a
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standard statistical inference problem of determining the coefficients of a
linear regression equation from observations of both the regressors and the
dependent variable observable.

We shall show that for this model when |;|<1, then along each sample
path the optimal actions of each agent, yin , will converge to the Nash
equilibrium output level, :�(1+;), for the true parameter value :. This
section will illustrate the main ideas only. The rest of the paper will present
the formalism and show how the result in this example is generalized to non-
linear multi-dimensional models. The convergence result for this example will
have three steps. The formal part of this paper will mimic these three steps.

Step I (Hierarchies of beliefs over fundamentals): Recall that for a
random variable x, Gnx is the ``average opinion'' of x, Gnx#�1

0 (Einx) di.
Since agent i will not in general know the beliefs of agents j{i, agent i will
not know the value of Gnx so will form an expectation, Ein Gnx of the
unknown quantity Gnx. Define Gn(Gnx) or G2

nx to be the average opinion
Gnx; i.e., G2

n x=�1
0 (EinGnx) di. Inductively, define Gr

nx to be the r-times
average opinion of the average opinion . . . of x.

There is 1-level knowledge of (MB) if agents know that other agents
engage in (MB); there is 2-level knowledge of (MB) if agents know that
other agents know that other agents engage in (MB); etc. It is easy to see
(by repeatedly substituting (2.1$) into (2.1)) that the following are the
implications of such levels of knowledge of (MB):

(1-level knowledge of (MB))

yin=Ein:&;Ein Gn:+;2EinGn yn ; (2.2)

(2-level knowledge of (MB))

yin=Ein:&;Ein Gn:+;2EinG2
n :&;3EinG2

nyn ; (2.3)

and

(R-level knowledge of (MB))

yin= :
R+1

r=1

(&;)r&1 Ein(Gr&1
n :)+(&;)R+1 EinGR

n yn . (2.4)

In (2.4) G0:#:. For example under 2-levels of knowledge of (MB) the
optimal action of agent i can be written in terms of that agent's expectation
of :, that agent's expectation of the average opinion of :, EinGn :, and
that agent's expectation of the average opinion of the average opinion of
yn , EinG2

in yn .
Now suppose that (i) 0<;<1 and (ii) there are some constants :� and

K in [0, �), such that it is common knowledge that (:, yn) lies in
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[0, :� ]_[&K, K]. I.e., each agent assigns probability one to the event that
(:, yn) lies in [0, :� ]_[&K, K]; each agent assigns probability one to
other agents having beliefs of this form; each agent assigns probability one
to other agents having beliefs about other agents belief of the just mentioned
form; etc. Take limits as R � � in (2.4) to obtain:

(Common knowledge of (MB))

yin= :
�

r=1

(&;)r&1 Ein(Gr&1
n :) (where G0:=:). (2.5)

If in addition to (2.5) above the parameter vector : is ``common
knowledge'' (or alternatively, there is only one possible value of the vector :)
then (2.5) reduces to yin=:�(1+;). This is the Nash equilibrium or
rational expectations equilibrium for this model. In particular, under common
knowledge of (MB) and :, agents will choose the Nash equilibrium output
at each date n. This conclusion, for the case when : is common knowledge,
is of course the usual Rationalizability argument as in [3], [29], and [13].
When the parameter : is not common knowledge, then the analogous
rationalizability argument results in (2.5).

Step II (Convergence): Let (0, F) denote the underlying probability
space. Let +i denote the ex ante belief of agent i over 0. Assume that for
all i and j in I, +i is mutually absolutely continuous with respect to each
+j (i.e., they assign probability zero to the same sets). Let Fi0 be the
_-algebra representing any initial private information that agent i may
have. Let Fin , n=1, 2, ..., be the _-algebra representing the information of
agent i up to date n�that is, from the observations in Fi0 and from the data
[ p1 , ..., pn&1]. Agent i 's belief at the beginning of date n will therefore be
represented by the conditional probability +i ( } | Fin). The expectations
operator of agent i, Ein , is defined via the probability +i ( } | Fin).

Since Ein[Ein+1:]=Ein+1: the sequence of expectations, [E[: | Fin]]�
n=1,

is a martingale sequence. The martingale convergence theorem then implies
that this sequence converges with probability one. This in turn implies that
Gn:#�1

0 (Ein:) di converges, and hence that Ein(Gn :) converges.
Inductively all terms of the form Ein(Gr&1

n :) will converge. Since |;|<1,
this in turn implies that the sum in (2.5) converges as n � �, hence we
may identify on each sample path a limiting value of the actions of each
agent, yi� #limn � � yin . (The details of these arguments of course appear
in the formal part of the paper.)

Step III (Identifying the limit): Fix a sample path. We may write the
demand equation as p� n=:&;y� n+=� n , where a bar, ``&'', on top of a
variable means the time average (e.g., p� n=�n

m=1 pm �n). From the strong
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law of large numbers we may set limn � � =� n=0. Then p� �=:&;y� . This
in turn implies that

yi�= lim
n � �

yin= lim
n � �

Ein[:&;yn]=Ei�[a&by�]=Ei�p� �= p� � , (2.6)

where Ei� is the expectations operator under the limiting information
��

n=1 Fin , and where the last equality follows from the fact that agents will
know p� � in the limit. Upon integrating (2.6) with respect to i we may
conclude that y�= p� � . Combining this with the previous conclusion that
p� �=:&;y� , implies that y�= p� �=:�(1+;). So from (2.6) we conclude
that in the limit each agent i chooses the action yi�=:�(1+;), the Nash
equilibrium value for the true value of the parameter :.

2.1. Summary of the Paper.

The above concludes the discussion of the example. We now proceed to the
formal part of the paper. In Section 4 we introduce the concept of a Savage�
Bayesian type. This notion of a type specifies an agent's utility parameters as
well as that agent's belief hierarchy over both the attribute vectors and the
actions of other agents at each date. In Section 5 we introduce a contraction
property on the optimal decision rules of agents. This plays the role played
by the assumption that |;|<1 in the example of this section. We then show
that under the contraction property each agent's optimal action is a function
of that agent's belief hierarchy over only the attribute vector (and we refer to
this belief hierarchy as a Harsanyi type). This step is equivalent to STEP I in
the example. In Section 7 we present formally the martingale argument which
proves that the belief hierarchies over the attribute vector, and hence the
optimal actions, converge over time. This is STEP II of the example. Finally
in Section 8 we identify the limiting actions as Nash equilibria to the true
game (characterized by the true attribute vectors). This corresponds to
STEP III in the example of this section.

In Section 9 we indicate what goes wrong when our key assumptions fail.
The failure of the contraction property may lead to an ``anything is possible''
��any time path of actions is possible under optimizing behavior of agents.
We show by example that when the mutual absolute continuity condition
on beliefs fails, we may get cyclical behavior on each sample path ad
infinitum. All proofs are relegated to the appendix.

3. SOME TERMINOLOGY AND MATHEMATICAL
PRELIMINARIES

I is the finite set of economic agents. Nature is agent 0, and is not a
member of I. Given any collection of sets [Xi]i # I , we define X#>i # I Xi
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and X&i #>j{i Xj unless otherwise stated; given X0 and [Xi]i # I , we shall
sometimes state that X&i #X0_>j{i Xj . Given any collection of functions
fi : Xi � Yi for i # I, f&i : X&i � Y&i is defined by f&i (x&i)#>j{i fj (xj).
The cartesian product of metric spaces will always be endowed with the
product topology. Let X be any metric space. P(X ) denotes the set of
probability measures on X (with X endowed with its Borel _-algebra,
generated by the open sets of X ). The set P(X) will be endowed with the
weak topology of measures; (see [4] for more on this). For ease of exposi-
tion, wherever the intent is obvious we shall assume, without mentioning
this, that generic sets and functions are Borel-measurable and generic
conditional probabilities are fixed regular versions.

4. THE FORMAL MODEL AT SOME FIXED DATE N

4.1. Actions and Attribute Vectors

There is a continuum of agents indexed by the unit interval I=[0, 1],
and uniformly distributed on that interval. For technical reasons we shall
suppose that these agents may be divided into finitely many classes with
each agent in a given class identical in all respects. Each agent i is charac-
terized by an attribute vector %i in some space 3i , which specifies those
parts of agent i 's utility function that may be unknown to other agents in
the economy. Nature has an attribute vector %0 in some space 30 , which
determines the underlying exogenous randomness of the economy. 30 and
3i are assumed to be compact metric spaces. Fix any date n. Agent i must
choose at date n an action ain in an action space Ai , assumed to be a
compact subset of RK for some K<�. The utility function of agent i is the
continuous and uniformly bounded function ui : 3i _30_Ai_A&i � R,
which yields agent i 's utility as a function of her own attribute vector
%i # 3i , nature's attribute vector %0 # 30 , her own action, ai # Ai and the
actions of the other agents a&i # A&i . Note that the parameters %i and %0

are both assumed to be independent of the date.

4.2. Beliefs and Savage�Bayesian Types

At the beginning of date n agent i will be characterized by a Savage�
Bayesian type qin #(%i , q�

in ). Here %i is agent i 's attribute vector; and
q�

in =(q1
in , q2

in , . . .) is agent i 's hierarchy of beliefs over the space of attribute
vectors and date n action of the agents, 3_A. In particular, q1

in is agent i 's
first order belief and is a probability which specifies agent i 's beliefs over
3&i _A&i ; q2

in is agent i 's second order belief which specifies agent i 's belief
about the first order beliefs of other agents; more generally, qr+1

in is agent
i 's (r+1)th order belief, which specifies agent i 's belief about the r th order
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beliefs of other agents. Formally, q�
in is an element of a space Q�

in which is
as constructed in Appendix A by setting 5i=3i _Ai and 50 #30 in that
construction. Qin #3i_Q�

in is the space of agent i 's date n Savage�
Bayesian types. From Appendix A we know that each hierarchy of beliefs
q�

in # Q�
in of agent i induces a unique probability Pi (q�

in ) over the space
30 _Q&in representing agent i 's belief about nature's attribute and the
Savage�Bayesian types of other agents.

One may ask: In specifying an agent's beliefs why do we need to go
beyond the first level belief, q1

in over 3&1_A&i ? After all, is this not all
that we require for determining agent i 's optimal action? Well, to make
statements about ``common knowledge of maximizing behavior'' we need
higher order beliefs. As indicated in the example of Section 2, such common
knowledge assumptions will be critical in obtaining our convergence result.

4.3. Decision Rules

An agent i with Savage�Bayesian type qin=(%i , q�
in ) that chooses an

action ai will receive a date n expected utility equal to

| [ui (%i , %0 , ai , a&i)] dPi (q�
in ), (4.1)

where the integration is over %0 # 30 and a&i # A&i with respect to the
measure Pi (q�

in ). Of course, for any q�
in =(q1

in , q2
in , . . .), integration over

30_A&i with respect to Pi (q�
in ) is the same as integration with respect to the

first order belief q1
in .) A date n decision rule for agent i is a (Borel-measurable)

function fin : Qin � Ai which specifies a rule for how agent i chooses a date n
action as a function that her date n Savage�Bayesian type, qin . Define Fin to
be the set of all such date n decision rules for agent i. That is,

Fin #[ fin : Qin � Ai such that fin is Borel-measurable]. (4.2)

Define F&in #>j{i Fj , the set of tuples of decision rules for all agents
other than i, and define Fn #>j # I Fj , the set of tuples of decision rules for
all agents. We define the set of actions which maximize the expected utility
of the agent i with Savage�Bayesian type qin=(%i , q�

in ) to be

f *in(qin)#Argmax
ai # Ai

| [ui (%0 , %i , ai , a&i)] dPi (q�
in ). (4.3)

To ensure that f *in is well-defined we impose the following assumption:

there is a unique solution to the maximization problem in (4.3)

so that f *in is unique-valued; further, the mapping f *in :Qin � Ai (4.4)

defined by (4.3) is Borel-measurable.

274 YAW NYARKO



File: 642J 225410 . By:BV . Date:23:05:97 . Time:14:46 LOP8M. V8.0. Page 01:01
Codes: 3397 Signs: 2725 . Length: 45 pic 0 pts, 190 mm

Under the assumption of compactness of Ai and continuity of ui on Ai , a
solution to the maximization problem in (4.3) exists. If we suppose in
addition that ui is strictly concave in ai , then f *in will be unique-valued and
(from Berge's maximum theorem) will be continuous, and hence Borel-
measurable, on Qin . Assumption (4.4) then holds.

Suppose that agent i believes that agents j{i are choosing actions
via some decision rules specified by f&in=[ fjn]j{i # F&in . If agent i is
of Savage�Bayesian type qin=(%i , q�

in ), then her best-response may be
denoted by

9in( f&in)(qin)#Argmax
ai # Ai

| ui (%0 , %i , ai , f&in(q&in)) dPi (q�
in ), (4.5)

where the integration is over %0 and q&in with respect to the measure
Pi (q�

in ) induced by agent i 's Savage�Bayesian type. Equation (4.5) of
course defines a mapping 9in : F&in � Fin with the interpretation that if at
date n agent i of Savage�Bayesian type qin believes that other agents are
using decision rules f&in # F&in then the action ain=9in( f&in)(qin) is
optimal in the sense implicit in (4.5). Define 9n : Fn � Fn by setting
9n( fn)#>i # I 9in( f&in) for all fn #[ fin]i # I # Fn . 9n( fn) is the profile of
best-response decision rules, one for each agent, that the agents use when
they believe that others are using the decision rules specified by
fn=[ fin]i # I .

Notice that the definition of 9in above involves a counter-factual of some
sort. Agent i of Savage�Bayesian type qin has a belief about the actions of
other agents given by the measure Pi (q�

in ). In computing 9in( f&in) however
we perform the thought-experiment ``if agent i believes others are using
decision rules f&in , what is agent i 's optimal action.'' In reality of course
agent i need not believe that others are using those particular decision
rules.

In reality, each agent i believes agent j chooses actions via her optimal
decision rule, f *jn . We may assume that each agent i knows f *jn for the
following reason: By assumption the parameter %j represents that part of
agent j 's utility function that other agents may have imperfect information
about; hence agent i knows j 's utility function as a function of %j . Further,
agent j 's belief is uniquely specified by q�

in . Hence, each agent i can
determine the optimal action of any agent j as a function of that agent j 's
Savage�Bayesian type qjn=(%j , q�

jn ). We suppose agents do indeed choose
optimal actions given their belief and this fact is common knowledge. This
implies that each agent will know how other agents are choosing their
actions as a function of their Savage�Bayesian types. In particular each
agent i will know that agent j chooses her action via the decision rule f *jn
of (4.3). Since each agent i knows that the other agents are using decision
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rules f *&in #[ f *jn]j{i , and since each such agent i is maximizing expected
utility, f *in must be a best-response to f *&in , so f *in=9in( f *&in). This in turn
implies that f n* #[ f *in] is a fixed point of the mapping 9n .

5. STEP I: DECISION RULES AS FUNCTIONS OF
BELIEF HIERARCHIES OVER FUNDAMENTALS

5.1. We endow the space of agent i 's decision rules, Fin , with the sup
norm, & }&, which is defined for any fin # Fin by

& fin&=Sup[ | fin(qin)| such that qin # Qin], (5.1)

and where | } | is the Euclidean norm over Ai �RK. The sup norms on the
product spaces F&in and Fn are defined to be the ``maximum'' of the sup
norms of the coordinate spaces; i.e., given any f&in # F&in (resp. fn # Fn)
define & f&in&#Max j{i & fjn & (resp. & fn&#Maxi # I & fin&). We will now
require the best response mapping 9in to be a contraction:

(Contraction) For each i # I, 9in : F&in � Fin is a contraction of

modulus #i where 0�#i<1. That is, for all f&in and f $&in in (5.2)

F&in , &9in( f&in)&9in( f $&in)&�#i & f&in& f $&in&.

Under (5.2) it is easy to verify that 9n #[9in]i # I : Fn � Fn is also a
contraction operator, of modulus #=Max i # I #i<1. Since Fn is easily
verified to be a complete normed space under the sup norm we conclude
from the contraction mapping theorem that 9n has a unique fixed point.
We argued earlier that the collection of optimal decision rules, f n* #
[ f *in]i # I is a fixed point of 9n . Hence under (5.2), f n* #[ f *in]i # I is the only
fixed point of 9n .

5.2. Example (The Linear Muth Model )

We now verify that in the example of Section 2 when the intercept of the
demand curve, ;, is less than one in absolute value then the contraction
property (5.2) holds. In that example we set the optimal action of agent i
to be yin=Ein[:&;yn] where : is the parameter vector and yn=�1

0 yjn dj
is the aggregate output level. In verifying that (5.2) we will make life harder
for ourselves by complicating the model in two ways. First suppose (as we
should have in that example) that the optimal action of each agent is yin=
Max[0, Ein[:&;yn]], so that the agent never chooses negative output and
never has negative profit. Suppose also that the parameter ; may be
unknown. The earlier assumption that |;|<1 now becomes: there exists a
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constant ;� <1 such that it is common knowledge that the absolute value
of ; is less than ;� <1.

The set up of Section 4 requires that the action spaces be compact. To
obtain this we proceed as follows: We suppose that the parameter : is
uniformly bounded and in particular that there exists an :� >0 such that it
is common knowledge to all agents that :�:� . By assumption agents are
choosing non-negative outputs. If this fact is known to each agent then the
optimal action of each agent becomes yin=Ein[:&;yin]�:� . Hence we
may take the action space of each agent to be the interval [0, :� ]. (The
requirement that the optimal actions lie in a compact set is referred to by
[13] as the ``credible price boundedness'' assumption.)

We now verify that the contraction property (5.2) holds. Suppose that
agent i believes that each agent j{i is using the decision rule Yj : Qjn � R1

+;
i.e., agent i believes that the agent j of Savage�Bayesian type qjn chooses
action Yj (qjn). Then the optimal action for agent i of Savage�Bayesian type
qin is the action

Yi (qin)#Max {0, | [:&;Y� &i (q&in)] dPi (qin)=, (5.3)

where Y� &i (q&i)#�1
0 Yj (qjn) dj is the aggregate output (where, recall, agent

i is assumed infinitesmal) and where the integration in (5.3) is over :, ; and
q&in with respect to the measure Pi (qin) induced by agent i 's Savage�
Bayesian type. Let [Y$j]j{i be another collection of decision rules for
agents other than i and let Y$i (qin) be the best-response analogous to (5.3).
Then, noting that for any two real numbers m and m$, |Max[0, m]&
Max[0, m$]|�|m&m$|, the following computation shows that the contraction
property (5.2) above holds with modulus of contraction ;� :

&Yi&Y$i&# Sup
[qin # Qin]

|Yi (qin)&Y$i (qin)|

so from (5.3) and the definition of Y&i ,

�;� Sup
qin # Qin

| _|
1

0
| Yj (qjn)&Y$j (qjn)| dj& dPi (qin)

�;� Max
j{i, j # I

Sup
[qjn # Qjn]

|Yj (qjn)&Y$j (qjn)|

=;� Max
j{i, j # I

&Yj&Y$j&=;� &Y&i&Y$&i&.

5.3. Example (The Non-Linear Muth Model )

We now consider a non-linear version of the above Muth problem. To
this effect let us suppose that the cost function is not quadratic and the
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demand function is not linear. The objective of the firm may be taken to
be to maximize expected profit,

Ein[ pnyin&c( yin)] s.t. yin�0. (5.4)

The first order condition for this problem will be Einpn=�c( yin)��yin .
Hence in general the solution will be of the form yin=Max[0, L(Einpn)]
where L is some possibly non-linear function of the expected price. Next,
suppose that the demand curve is of the form pn=W(:&;yn)+=n where
W is a possibly non-linear function of the expected output :&;yn given
the parameter vector %0=(:, ;) and the aggregate output yn #� yjn dj ; and
where =n is a zero mean shock term. Combining these relations implies that

yin=Max {0, L \Ein _W \:&; |
1

0
yjn dj+&+=. (5.5)

Let &L& and &W& be the modulus of contraction of the functions L and
W, resp. Let ;� be a bound on the unknown parameter ; as in Example 5.2.
Assume that ;� &L& }&W&<1 (and note that for this L and W need not
necessarily be contraction operators of modulus less than one). Let Yi (qin)
and Y&i (q&in) have the same interpretation as in Example 5.2. Then,
following the arguments used in Example 5.2, it is easy to verify that
&Yi&Y$i&�;� &L& }&W& &Y&i&Y$&i&, so that the contraction property
holds.

5.4. Harsanyi Types

Agent i of Savage�Bayesian type qin will also have a date n belief
hierarchy {�

in =({1
in , {2

in , . . .) over the attribute vector %=(%0 , [%i]i # I). In
particular, {1

in is agent i 's first order belief over 3 and is a probability that
specifies agent i 's beliefs over 3&i #30_>j{i 3j ; {2

in is agent i 's second
order belief over 3 which specifies agent i 's belief about the first order
beliefs of other agents; more generally, {r+1

in is agent i 's (r+1)th order
belief over 3, which specifies agent i 's belief about the r-th order beliefs
over 3 of the other agents. Formally, {�

in =({1
in , {2

in , . . .) is an element of a
space T �

in as constructed as in Appendix A with 50=30 and 5i=3i for all
i # I. The tuple {in #(%i , {�

in ) consisting of agent i 's attribute vector and
belief hierarchy over % is agent i 's date n Harsanyi type, and is an element
of the space of Harsanyi types, Ti #3i_T�

i . Each Harsanyi type
{in=(%i , {�

in ) has associated with it a unique probability pi ({�
in ) over

30 _T&in representing the belief of agent i of Harsanyi type {�
in about the

attribute of nature and the Harsanyi types of other agents.
Agent i 's Savage�Bayesian type specifies a belief hierarchy over both the

actions a&in and the attribute vectors, %&i , of other agents. Agent i 's
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Harsanyi type specifies a belief hierarchy over only the attribute vector %.
Via a kind of ``projection'' operation, each Savage�Bayesian type qin

induces a unique Harsanyi type representing tuple of the attribute vector
and belief hierarchy over 3 of the agent i with Savage�Bayesian type qin .
We denote this hi (qin). For example, the first order coordinate of agent i 's
Harsanyi type, i.e., {1

in , is that agent's belief over 3&i , which is of course
the same as the marginal over 3&i of the first order coordinate of that
agent's Savage�Bayesian type, q1

in . (See Appendix B for details. Also
note that optimality is not used at all at this stage��only a projection
operation.)

Define Ci (Tin) to be the set of all continuous Harsanyi-type based
decision rules for agent i:

Ci (Tin)#[gin : Tin � Ai and gin is continuous]. (5.6)

Also define C&i (T&in)#> j{i Cj (Tjn) and C(Tn)#>i # I Cin(Tin) where
Tn #>i#I Tin . In comparison, recall that Fin is the set of decision rules of
agent i which are (measurable) functions of agent i 's Savage�Bayesian
type. Each gin # Ci (Tin) may be identified with a unique element fin of Fin

by setting for each qin # Qin , fin(qin)= gin({in(qin)), where {in(qin) is the
Harsanyi type of an agent with Savage�Bayesian type qin . With this
identification we shall consider Ci (Tin) to be a subset of Fin .

Suppose agent i believes that all agents j{i are choosing actions via
Harsanyi-type based decision rules gjn # Cj (Tjn). The beliefs of agent i of
Harsanyi type {in=(%i , {�

in ) about the Harsanyi types of other agents is
given by probability pi ({�

in ) defined earlier. So if that agent i chooses action
ai her expected utility is

| ui (%0 , %i , ai , g&in({&in)) dpi ({�
in ), (5.7)

where the integration is over %0 # 30 and {&i # T&i with respect to the
measure pi ({�

in ). Notice that this expected utility is a function only of agent
i 's Harsanyi type {in . Hence the optimal action ai may be chosen as a
function of {in . Under (4.4) the optimal action of an agent from any belief
is unique, so the optimal action of each agent will be chosen as a function
of {in . From the assumption that the utility function is continuous we may
conclude that the resulting decision rule is a continuous function of {in . (See
the maximum theorem of [2].) In particular,

9in : C&i (T&in) � Ci (Tin) for all i # I. (5.8)

This in turn implies that 9n #[9in]i # I : C(T ) � C(T ). We argued earlier
that 9n is a contraction operator with fixed point equal to the profile of
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optimal decision rules f n* #[ f *in]i # I # Fn . Since C(Tn) is a closed normed
space when endowed with the sup norm, the fixed point of 9n lies in C(Tn).
Hence we have:

Proposition 5.1. For each i # I, the optimal decision rule of each agent
is a continuous function of that agent's Harsanyi type; i.e. f *in # Ci (Tin).

5.5. Example (The Muth Model ):

Consider again the example of Section 2. There, the attribute vector is
the parameter :. An agent's Harsanyi type specifies that agent's belief
hierarchy over :. We showed in Eq. (2.5) that under the common knowledge
of maximizing behavior (MB), each agent's action is a function of that
agent's hierarchy of beliefs over :. Notice that the expression in (2.5)
involves sums of expectations. Since expectations are continuous in the
probabilities it is easy to verify that (2.5) is a continuous function of the
hierarchy of beliefs over :. In particular, from Eq. (2.5) we see that each
agent i 's optimal action is an element of Ci (Ti). This verifies Proposition 5.1.

6. THE DYNAMIC MODEL

6.1. Let 0 be the underlying space on which all random variables are
defined. (Formally, 0 is the ``state space'' as constructed in [23], and is a
complete and separable metric space). Any | # 0 specifies the action of
each agent at each date n=1, 2, . . .; it also specifies the attribute vector
%=[%0 , [%i]i # I] and any other underlying randomness in the economy. F

denotes the set of Borel subsets of 0. Each agent i has an ex ante subjective
belief, +i , which is a probability over (0, F) and represents that agent's
prior belief over 0. For each i # I, there is a non-decreasing sequence of
_-algebras [Fin]�

n=0 of F. Fi0 represents the information agent i receives at
``date 0,'' information which specifies agent i 's attribute vector %i . Fin is the
_-algebra representing the information of agent i at the beginning of date
n (after date n&1 decisions have been made). This information would
come from all observations of agent i from periods 0 through n&1. At
the beginning of date n in the state of the world | # 0, agent i 's belief
about the true state of the world is represented by the value at | of the
probability +i conditional on Fin , +i ( } | Fin)(|); her Savage�Bayesian type
will be some qin(|)=(%in(|), q�

in (|)) # Qin ; her Harsanyi type will be given
by {in(|)=(%in(|), {�

in (|)) # Tin ; and she will choose the action ain(|)=
f *in(qin(|)).

We shall assume that the collection of subjective ex ante beliefs of agents,
[+i]i # I obeys:
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Condition (GH). +i and +j are mutually absolutely continuous \i, j # I;
i.e., \i, j # I and \D�0, +i (D)>0 if and only if +j (D)>0.

Condition (GH) requires that agents agree ex ante about the events
which have zero probability. Condition (GH) does not require the ex
post probabilities after receipt of information on their utility attributes,
+i ( } | Fi0)(|) and +j ( } | Fi0), to be mutually absolutely continuous. It
should be clear that if +i=+ for all i, so that + is a common prior, then
condition (GH) holds. Condition (GH) is therefore weaker than the
common prior assumption. We therefore name this ``condition (GH)'' for
``Generalized Harsanyi'' common prior condition. To enable us to state our
results more succinctly we fix a measure +* which is mutually absolute
continuous to each of the +i . For example we could fix an agent i ' and set
+* equal to +i $ . One may wish to think of the measure +* as that of an
``outside observer.'' Alternatively +* may be interpreted as the ``true
distribution'' if it is generated by the ``true'' ex ante distribution of the
Savage�Bayesian types of agents and the ``true'' behavior of the agents.

7. STEP II: CONVERGENCE OF BELIEF HIERARCHIES
OVER FUNDAMENTALS

7.1. In Section 5 we concluded that each agent i at each date n chooses
a date n action as a continuous function of her Harsanyi type. This
corresponds to STEP I in the example of Section 2. A Harsanyi type is a
date n belief hierarchy over the attribute vector. Note that the true value
of the attribute vector does not vary over time��it's value is fixed at date
0. An agent's Harsanyi type is a belief hierarchy over the attribute vector,
and may vary over time because of the information received over time.
However in the long run this information has smaller and smaller influence
on beliefs about the fixed attribute vector. In this section we shall show
that each agent i 's date n belief hierarchy over the attribute vector, and in
particular that agent's date n Harsanyi type, converges over time (i.e., as
n � �). Note that this is STEP II of the example of Section 2.

We shall use condition (GH) in obtaining the convergence result. The
convergence will hold on a set of sample paths with ``probability one''.
Under condition (GH) the ``probability one'' is with respect to both +i and
+*. The results of this section will not specify where beliefs converge to, and
in particular the results here will not claim that there is convergence to
complete information about the true parameter vector; this will be the
purpose of the next section, Section 8.

For emphasis, we write {r
in(|) to denote the date n r th order belief of

agent i over the attribute vector in the sample path | # 0. We let {i�(|)
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denote the hierarchy of beliefs under the limiting information field Fi�=
��

n=1 Fin for agent i at |. Let wlim denote the operation of taking the limit
of a sequence of probability measures in the weak topology of measures.
(See [4], for more on this.) Define for each i # I and each r and
n=1, ..., �,

Cr
i #[| # 0 | wlim

n � �
{r

in(|)={r
i�(|)], Cr#,

i # I

C r
i and C# ,

�

r=1

Cr. (7.1)

The set C r
i is the set of sample paths where the i th agent's r th order beliefs

over % converge; the set C is the set where all orders of beliefs of each agent
converge.

Theorem 7.1 (Convergence of Beliefs). Suppose condition (GH) holds.
Then +*(C)=1.

Theorem 7.1 implies that along each sample path (excluding a set with
zero probability) the date n Harsanyi type of each agent, {in , converges as
n � � to some value {i� . From Section 5 we know that the date n action
ain is a continuous function of the date n Harsanyi type {in . Theorem 7.1
therefore implies that ain converges to a limiting action ai� along each
sample path (excluding a set of sample paths with +*, and therefore +j for
all j # I, probability zero). In particular we have:

Corollary 7.2. Let ain(|) denote the date n action of agent i in the
sample path or state of the world |. Then +*([| # 0 | ain(|) converges as
n � � to some ai�(|)])=1.

8. STEP III: IDENTIFYING LIMIT ACTIONS [ai�]i # I

AS EQUILIBRIA

8.1. The collection of actions [ai*]i # I is said to be a Nash (or Rational
Expectations) equilibrium for the attribute vector %=(%0 , [%i]i # I) if \i # I,

ai* # Argmax
[ai # A i]

ui (%0 , %i , ai , a*&i). (8.1)

To characterize the limiting actions as Nash equilibria for the true %0 , we
will have to provide a condition which says that enough information about
%0 is obtained in the limit. It turns out that we do not need to assume that
%0 is learnt completely in the limit; a sufficient statistic is enough. Indeed,
for each i # I, suppose that there exists a function Hi : 30_A&i � Rm, for
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m<� and a function Ui : 3i_Ai _Rm � R such that the utility function
of agent i may be written as

ui (%i , %0 , ai , a&i)=Ui (%i , ai , Hi (%0 , a&i)) (8.2)

\(%0 , %i , ai , a&i) # 30_3i_Ai_A&i . In (8.2) we see that Hi (%0 , a&i) is a
``sufficient statistic'' for %0 and a&i when computing agent i 's utility.
Suppose that each agent i knows the value of hi*=Hi (%0 , a*&i). Suppose
also that each agent is maximizing utility subject to knowledge of hi*; i.e.,
suppose that

ai* # Argmax Ui (%i , } , hi*) where hi*=Hi (%0 , a*&i). (8.3)

Then from the definition of Ui in (8.2), (8.3) implies that (8.1) is true. In
particular the actions [ai*]i # I are a Nash equilibrium for the true attribute
vector %=(%0 , [%i]i # I). Note that an agent may know the true value of
Hi (%0 , a*&i) without knowing the individual values of %0 and a*&i #
[aj*]j{i . In that case the collection of actions [ai*]i # I may be a Nash
equilibrium in the sense that they are optimal when each agent i behaves
as if she knows the true %0 and the true actions of others, a*&i ; however
agent i may in reality choose the action ai* based on a belief about %0 and
the actions of others, a*&i , which is different from, or involves uncertainty
about, the true value of %0 and the actions of others.

We know from Section 7 that under our assumptions the actions of
agents converge so that ain � ai� for all i # I. If each agent i 's utility
function has the representation in (8.2) and Hi is continuous then we may
conclude that hin #Hi (%0 , a&in) converges to hi� #Hi (%0 , a&i�). We will
assume that agent i learns in the limit the value of hi� #Hi (%0 , a&i�). The
earlier argument then implies that the limiting actions constitute a Nash
equilibrium.

The requirement that agent i learns hi� in the limit is equivalent to the
requirement that hi� be measurable with respect to the agent's limit
information, Fi� #��

n=0 Fin . We now provide some justification for such
an assumption: Note that hin is the item that appears in the agent i 's utility
function, perhaps after integrating out noise terms. At the end of each
period after the utility has been ``enjoyed,'' the agent should be able to
invert the utility function and recover a perhaps noisy estimate of hin . Since
hin #Hi (%0 , a&in) and a&in converges, it is reasonable to expect that in the
limit the agent will learn the limiting value of hin -usually by averaging out
the noise term via a law of large numbers type argument. We show in
Section 8.2 that this is the case in the Muth examples. For more general
techniques of handling this learning problem, and in particular on determining
when h� is Fi� measurable, see [26].
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The proposition below, our main theorem, summarizes this discussion.

Proposition 8.1. Suppose the utility function of each agent may be written
as (8.2) above for some collection [Hi]i # I of uniformly bounded and
continuous functions. Suppose that for each i # I, Hi (%0 , a&i�) is
Fi�-measurable (or, equivalently, each agent ``learns'' in the limit the value
of Hi (%0 , a&i�)). Then for +*-a.e. sample path, the collection of limiting
actions, [ai�]i # I is a Nash (or Rational Expectation) Equilibrium for the
true parameter vector %=(%0 , [%i]i # I) defined for that sample path.

8.2. Example

Consider the Muth model of Section 2. In that example nature's attribute
vector is the parameter %0=:. We may define

Hi (:, y&i)#:&; |
1

0
yj dj, (8.4)

which is equal to the expected price when the actions of all agents except
i (who is ``small'') is y&i=[ yj]j{i and the intercept of the demand curve
is :. The profit function of agent i when she chooses output yi may then
be written as Ui (%i , yi , Hi (%0 , y&i))=Hi (%0 , y&i) yi&0.5y2

i . Hence we
obtain the utility function in (8.2) above. In the nonlinear Muth model of
Section 5.3, a function W( } ) determines the expected price so we may set

Hi (%0 , y&i)#W \:&; |
1

0
yi dj+ (8.5)

in which case the profit function becomes Ui (%i , yi , Hi (%0 , y&i))=
Max[0, yi W(:&; � yj dj)&c( yi)], and again (8.2) holds.

By assumption each agent observes the price. In the linear Muth model
of Section 2 this means that each agent observes pn=:&; �1

0 yj dj+=n ,
which from (8.4) becomes pn=Hi (:, y&in)+=n . Taking the average over n
of this latter equation and invoking the strong law of large numbers implies
that p� �=Hi (:, y&i�) where p� �=limN � � �N

n=1 pn . Hence we see
that agent i learns the limiting value, Hi (:, y&i�), so we may apply
Proposition 8.1 in this case. For the non-linear Muth model each agent i
observes pn=W(:&; �1

0 yj dj)+=n . Hence a similar appeal to the strong
law of large numbers implies that agent i will learn the limiting value
Hi (:, y&i�), so again Proposition 8.1 may be used to conclude that there
is convergence to the Nash equilibrium of the true model.

Consider again the linear Muth model but suppose that there is imperfect
information over both the parameter : and ; as well as the individual
actions of the agents [ yj]j # I . Let us denote the true values of these by
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:*, ;* and [ yj*]j # I , respectively. Suppose however that each agent knows
the true value of quantity (:&;y) where y=�1

0 yj dj, the aggregate output;
i.e., suppose that each agent i assigns probability one to the event
[(:, ;, [ yj]j # I) | :&; �1

0 yj dj=:*&;* �1
0 yj* dj]. Then, each agent i will

choose the action yi*=Eip=Ei[:&;y]=:*&;*y*. Integrating both
sides of this equation over i implies that y*=:*&;*y* so y*=:*�
(1+;*). This in turn implies that yi*=:�(1+;). Hence each agent is
choosing the Nash equilibrium output level. However, this choice of action
may be based on imperfect information over :, ;, and y! K

9. WHAT HAPPENS WHEN KEY ASSUMPTIONS ARE VIOLATED?

9.1. The Violation of Contraction Property.

Condition (R) below says that for each action ai of agent i in some set
A� i , and for each pair (%i , {1

i ) representing agent i 's attribute vector, %i , and
belief about others' attribute vectors, {1

i , we can find a belief over actions
of others (in A� &i) which ``rationalizes'' the action ai given (%i , {1

i ):

Condition (R). Fix any subsets A� i �Ai for i # I. Suppose that \i # I, and
\(%i , {1

i , ai) # 3i_T1
i _A� i , _q1

i # Q1
i such that (i) ai= f i*(%i , q1

i ) and
(ii) h1

i (q1
i )={1

i .

Consider the linear Muth example with the parameter vector %0=(:, ;)
is common knowledge and ;�0. One can check that there are exactly two
situations: (i) ; # [0, 1), in which case the contraction property holds and
condition (R) can only be satisfied when A� i=[:�(1+;)] for all i, the
singleton set containing only the Nash equilibrium action; or (ii) ;�1, in
which case the contraction property fails but condition (R) holds for
A� i=[0, :]. As a second example, consider the linear Muth example but
where there is merely common knowledge that %0=(:, ;) lies in some
set [:

�
, :� ]_[;

�
, ;� ]. Suppose that ;

�
�:� �:

�
(and note that a necessary con-

dition for this is that ;
�
�1). Define A� i=A� =[0, :

�
]. One can show that

condition (R) holds in this case too. (To see this, fix any yi # A� i , and any
(first order) belief of i over (:, ;). Suppose further that agent i 's expecta-
tion of the aggregate output is Eiy=[Ei :& yi]�Ei ; (and that i believes y
and (:, ;) are independent). One can check that Eiy�0 and Eiy�:� �;

�
�:

�
.

Hence (R) holds.)
We will show in Theorem 9.1 below that under condition (R) we have an

``anything is possible'' result: Any stochastic process of actions (in
>�

n=1 >i # I A� i) is a possible outcome consistent with common knowledge
of maximizing behavior (MB)). The intuition behind Theorem 9.1 is as
follows: The only restrictions between date n and date n+1 beliefs is due
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to the fact that the true parameter vector, %, is fixed between those two
periods. This means that we can not vary agents belief hierarchies over %
across time at will. Instead, beliefs will obey a Bayesian updating condition
and will converge, from Theorem 7.1. Under the contraction property the
belief hierarchy over % determines completely the optimal actions of agents
(Proposition 5.1)��from which we obtain the convergence of actions.
Without the contraction property, and in particular with condition (R),
there is no such link between belief hierarchies over % and optimal actions.

To state our anything is possible result we need a bit more structure.
Consider as fixed 3, and [Ai , ui]i # I . For the dynamic problem we need to
specify in addition the process governing the observations of agents (which
in the case of the Muth example is the price process). To this effect, fix
some sets [Zi]i # I with the interpretation that zin # Zi is agent i 's end of
date n observation. Agent i 's end of date n history of observations will
therefore be [%i , ai1 , zi1 , ..., ain , zin], which includes her attribute vector %i

and past history of own actions. We take as given, or as a primitive of the
model, the conditional probabilities P(zn | an , zn&1 , ..., z1 , a1 , %) which
show how the date n observations are generated as a function of the past
actions and observations and the initial date 1 attribute vectors. Define
^AZ to be the set of all probability distributions over the stochastic process
(%, a1 , z1 , a2 , z2 , . . .) such that for all n the conditional probability of zn

given (an , zn&1 , ..., z1 , a1 , %) is P(zn | an , zn&1 , ..., z1 , a1 , %). We then have:

Proposition 9.1 (Anything is Possible). Suppose that condition (R)
holds. Fix any stochastic law PAZ # ^AZ such that PAZ([[ain]i # I # >i # I A� i

for all n])=1. Then there exist ex ante subjective beliefs of agents [+i]i # I

on a state space 0 such that the induced distribution over the process of
optimal actions and observations of the agents is precisely that obtained
from PAZ .

Observe that this theorem places no conditions on the true value of the
parameter %0 . For example in the linear Muth model it suffices that agents
believe that the true value of ; is larger than one for the theorem to hold,
even though the true value of ; may be strictly less than one.

9.2. Example Where Agents have Misspecified Priors (i.e., (GH) Fails) and
Outputs Cycle on Every Sample Path.

Consider the linear Muth example parametrized as follows: ;=1�3 and
this fact is common knowledge; and each agent i believes that all other
agents j believe that it is common knowledge that :=4�3. Then (2.5)
implies that agent i believes that all other agents j will choose action
yj=:�(1+;)=1 in each period. Each agent i believes that the parameter
: can be one of two points, :$=4�3 or :"=1. Let &1 be the probability
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assigned to the event [:=:$] and suppose that 0<&1<1. Notice that each
agent assigns probability zero to the true belief hierarchies of other agents;
each agent i is sure the other agents j will choose actions yj=1 at all dates
while in fact each agent will choose actions which depend upon beliefs of
: over [:$, :"]. Indeed, if &n is agent i 's date n probability assigned to the
event [:=:$] then from (2.1) agent i 's optimal date n action is

yin=Einpn=Ein[:&;yn]=&n�3+2�3. (9.1)

Hence condition (GH) is violated.
Suppose that the true value of : is :*=10�9. Suppose also that the noise

process [=n]�
n=1 is normally distributed with zero mean and unit variance.

Since = has support on all of the real line observe that despite the fact that
the i th agent's beliefs assign probability zero to the true beliefs of others,
the agent is not confronted with data (a price level) at any finite date that
can not be explained with some value of the noise term = at that date.
Hence at each date the agent may update her beliefs using Bayes' rule in
the usual manner.

For this model the Nash equilibrium output is 5�6. In the proposition
below we show that optimal outputs, yn , cycle ad infinitum between
outputs of 1 and 2�3, and hence around the Nash equilibrium output. Also,
beliefs &n cycle between 0 and 1.

Proposition 9.2. Let +* denote the true probability (over 0) generated
by the true value of :=:*. Then for +*-a.e. sample path, lim supn � � yn=1,
lim infn � � yn=2�3, lim supn � � &n=1 and lim infn � � &n=0.

The intuition behind the result is the following: Suppose that over time
agent i assigns large probability to the intercept term being equal to :$.
Then from (9.1) the agent will choose actions approximately equal to 1.
The data observed by the agent is then approximately p*=:*&;=10�9&
1�3=7�9, ignoring the shock terms. Since 7�9 is closer to :"&;=1&1�3=
2�3 than to :$&;=4�3&1�3=1, the agent will assign more weight to :"
being the true value of : than to :$. As the agent becomes more confident
that :" is the true value of :, from (9.1) the agent will choose actions
approximately equal to 2�3. Ignoring the shocks, the data observed by the
agent is then approximately pn*=:&(2�3) ;=10�9&2�9=8�9. The agent
believes y=1 so believes that the data generating process is pn=:&;.
Since 8�9 is closer to :$&;=4�3&1�3=1 than to :"&;=1&1�3=2�3,
the agent will assign more weight to :$ being the true value of :. This
process then repeats itselfs, and hence we see how optimal actions may
cycle between the values y=1 and y=2�3 ad infinitum.
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9.3. The Continuum of Agents and Zero Discount Factor Assumptions

With our continuum assumption on the set of agents, there is no active
learning (or ``teaching''). In particular, agents can not individually change
their actions to either get better information or to signal information to
other agents. The zero discount factor assumption implies that the agents
would not even want to do such active learning, even if they could, since
all payoffs would acrue in the future and that is not taken into account in
current decisions. If one were to introduce positive discount factors and
drop the continuum assumption, once could still make some progress using
the techniques of [17], [16] and [21]. Several differences have to be noted
though. First, the papers just mentioned in general do not obtain convergence
to Nash, but rather to subjective equilibrium of the repeated game. Note
well that from the folk theorem there are many Nash equilibria to the
repeated game��and hence even more subjective equilibria. Second, the
above mentioned papers typically require finitely many actions and require
agents to observe the same past history of actions��private information is
not allowed in those papers. Finally, note that when agents observe the
price signal, their ``types'' become correlated, even if initially they were
independent. One would then have to appeal to the results of [22] (which
is only for zero discount factors) rather than the above mentioned papers
to make progress on the positive discount factor case, and even in that case
one may have to settle with correlated equilibria, suitably defined for the
positive discount factor model.

10. APPENDIX A: HIERARCHIES OF BELIEFS AND
THE SPACE Bi

10.1. In this appendix we sketch the construction of hierarchies of beliefs.
The reader should consult [23] for the details and for references to the
literature. Recall that I is the set of ( finitely many classes of) agents and
nature is referred to as agent 0 (not a member of I ). We take as given a
collection of complete and separable metric spaces 50 and [5i]i # I . We
shall consider 5i to be the set pertaining to agent i; this will have the mean-
ing that i ``knows'' her own value of !i # 5i . We consider 50 to be the
parameters of ``nature.'' We proceed to construct the space of hierarchies of
beliefs over the space 5=50_>i # I 5i . Recall that given any metric space
X, P(X ) denotes the set of probability measures on the Borel subsets of X.
Recall also that P(X ) is endowed with the weak topology of measures. If
X is a complete and separable metric space then so is P(X). (See, e.g., [28,
Parthasarathy Theorems II.6.2 and II.6.5.])
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Construct the sets [Br
i ]

�
r=1 inductively as

B1
i #P(5&i), where 5&i #50 _`

j{i

5j , (10.1)

and given [Br
j ]j # I for some r�1, define

Br+1
i #P(Br

&i_5&i). (10.2)

An element b1
i # B1

i represents agent i 's belief about !&i # 5&i and shall be
referred to as agent i 's first order belief. An element b2

i # B2
i specifies agent

i 's belief about the first order beliefs of others and shall be referred to as
agent i 's second order belief. An element br

i # Br
i is i 's r th order belief and

it specifies agent i 's belief about the (r&1)th order beliefs of other agents.
It should be clear that higher order beliefs of an agent should be related

to the lower order beliefs of the same agent by some kind of projection
operation. For example, if b1

i and b2
i are the first and second order beliefs

of the same agent then b1
i should be the marginal distribution of b2

i on 5&i .
To express this relation we define the functions ,r

i : Br+1
i � Br

i inductively
as follows: For any subset D�5&i ,

,1
i (b2

i )(D)#b2
i ([B1

&i_D]) for all b2
i # B2

i ; (10.3)

i.e., ,1
i is the operator that yields the marginal distribution on 5&i from

any joint distribution on B1
&i _5&i ; and given [,r&1

j ]j # I define ,r
i by

setting for any br+1
i # Br+1

i and any D�Br&1
&i _5&i ,

,r
i(br+1

i )(D)#br+1
i ([(br

&i , !&i) # Br
&i_5&i : (,r&1

&i (br
&i), !&i) # D]). (10.4)

The set of all possible belief hierarchies of agent i is then defined to be the
set

Bi #{(b1
i , b2

i , . . .) # `
�

r=1

Br
i : br

i =,r
i(b

r+1
i ) for all r�1= . (10.5)

10.2. The Mapping Pi : Bi � P(B&i_5&i)

Fix any element bi=(b1
i , b2

i , . . .) # Bi . We will now construct an
``associated'' probability Pi (bi) # P(B&i _5&i) with the property that for
each integer r, the marginal of Pi (bi) on Br

&i_5&i is equal to br+1
i .

Recall that by definition B&i is a subset of the infinite cartesian product
>�

r=1 Br
&i . Define PROJ&i, r : B&i_5&i � Br

&i_5&i to be the projection
of the space B&i_5&i onto Br

&i_5&i . The inverse of the projection
mapping, (PROJ&i, r)

&1 Dr, is the ``upliftment'' of the subset Dr�Br
&i_5&i

to the infinite cartesian product B&i_5&i . Fix any integer r and define the
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class 2r of r-cylinder subsets of B&i _5&i to be those which are
``upliftments'' of some subset of Br

&i_5&i ; i.e.,

2r#[D�B&i_5&i : D=(PROJ&i, r)
&1 Dr

for some (measurable) Dr�Br
&i_5&i]. (10.6)

For any such cylinder set D # 2r and any bi=[b1
i , b2

i , . . .] # Bi , define

Pi (bi)(D)=br+1
i ([PROJ&i, rD]). (10.7)

From the probabilistic coherence condition implicit in the definition of Bi

in (10.5), it is easy to check that for each bi # Bi , Pi (bi) in (10.7) is
``well-defined'' over ��

r=1 2r (in a sense analogous to the Kolmogorov
consistency condition), and hence extends to a unique probability measure
over all Borel subsets of B&i_5&i . (See for example [28, Theorem 4.2.,
p. 143] or [23].) Since cylinder sets are ``convergence determining'' it is
easy to check that the mapping Pi : Bi � P(B&i_5&i) is continuous.

10.3. The Mapping hi : Qi � Ti

Fix any date n. For expositional convenience we drop the subscript n
from Qin and Tin . We now define inductively the mapping hi : Qi � Ti

which determines the Harsanyi type {i=hi (qi) of an agent with Savage�
Bayesian type qi . Define h1

i : Q1
i � T 1

i by h1
i (q1

i )#Marg q1
i , \q1

i # Q1
i . Next

suppose we have defined for some r�1 the function hr
i : Qr

i � T r
i .

Define hr+1
i : Qr+1

i � T r+1
i as follows: For each qr+1

i # Qr+1
i and for all

S�3&i _T r
&i , hr+1

i (qr+1
i )(S)=qr+1

i ([(%&i , a&i , qr
&i) # 3&i_A&i_Qr

&i |
(%&i , hr

&i (q
r
&i)) # S]). By induction on r we have therefore constructed a

sequence of functions hr
i : Qr

i � T r
i \i # I and \r=1, 2, ... . Finally define

hi : Qi � Ti by setting for each qi=(%i , q1
i , q2

i , . . .) # Qi , hi (qi)#(%i , h1
i (q1

i ),
h2

i (q2
i ), . . .). (It is easy to verify that hi (qi) thus defined lies in Ti).

11. APPENDIX B: THE PROOFS

Proof of Theorem 7.1. We begin with the following result, which is
a direct implication of the Martingale Convergence theorem (see [10,
Theorem 9.4.8., (p. 340]):

Claim. Let Xn for n=1, 2, . . . and n=� be a sequence of uniformly
bounded real-valued random variables on 0. Fix any i # I and suppose that
limn � � Xn=X�+i-a.e. Then limn � � � Xn d+i ( } | Fin)=� X� d+i ( } | Fi�),
+i -a.e.
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Using standard arguments it is easy to show that on any complete and
separable metric space S, there exists a countable set, 1(S), of uniformly
bounded continuous real-valued functions on S which are convergence-
determining in the following sense: The weak convergence of a sequence
of probability measures [mn]�

n=1 to a measure m� holds whenever
limn � � � g dmn=� g dm� for each g in 1(S). Recall the definitions of the
sets Ck

i and Ck in (7.1). Fix an i # I and any real-valued bounded continuous
function, g, on 3. Apply the claim with Xn=X�= g(%); then we may
conclude that +i-a.e., limn � � �3 g(%) +i (d% | Fin)=�3 g(%) +i (d% | Fi�).
From the definition of {1

in this implies that limn � � � g d{1
in=� g d{1

i� , +i

a.e. This can be made to hold with + probability one for any countable
collection of such functions g (simultaneously) and hence for all g # 1(3).
Hence w limn � � {1

in={1
i� with +i probability one. In particular, +i (C 1

i )=1
for each i. From the definition of +* under condition (GH), this implies
that +*(C 1

i )=1 for all i # I and hence +*(C1)=+*(� i # I C 1
i )=1.

Next suppose that for some r=1, 2, ..., we have shown that +*(Cr)=1.
Fix any real-valued bounded continuous function g on T r_3. Set Xn #
g({r

n , %) for n=1, ..., �. Then +*(Cr)=1 implies that limn � � Xn=X�

+-a.e. From the definition of +*, the same is true +i -a.e for each i # I. The
claim then implies that limn � � � Xn d+i ( } | Fin)=� X� d+i ( } | Fi�) +i-a.e.
From the definition of {r+1

in this implies that limn � � � g d{r+1
in =� g d{r+1

i� ,
+i -a.e. This can be made to hold with +i probability one for all functions
g in the countable set 1(Tr_3). Hence w limn � � {r+1

in ={r+1
i� +i-a.e. So

+i (C r+1
i )=1 and therefore +*(C r+1

i )=1. Since this is true for all i # I we
obtain that +*(Cr+1)=+*(�i # I C r+1

i )=1. By induction we therefore
conclude that +*(Cr)=1 for all r=1, 2, ... . Hence +*(C)=1. K

Proof of Proposition 8.1. Define hin=Hi (%0 , a&in) and hi�=Hi (%0 , a&i�).
Since each agent is choosing optimal actions at each date, \âi # Ai ,
Ei[Ui (%i , ain , hin) | Fin]�Ei[Ui (%i , âi , hin) | Fin], +*-a.e. Taking limits as
n � � and applying the claim implies that \âi # Ai , Ei[Ui (%i , ai� , hi�) | Fi�]
�Ei[Ui (%i , âi , hi�) | Fi�], +*-a.e. From the hypothesis of this proposition
hi�=Hi (%0 , a&i�) is Fi�-measurable, so Ui (%i , ai� , hi�)�Ui (%i , âi , hi�).
But then from the definition of Ui we obtain ui (%0 , %i , ai� , a&i�)�
ui (%0 , %i , âi , a&i�), which proves the proposition. K

Proof of Proposition 9.1. We begin with the following lemma:

Lemma 9.1.1. \i # I, _Fi : Ti_A� i � Qi such that if qi=Fi ({i , ai) then
ai= f i*(%i , qi) and hi (qi)={i .

Proof of Lemma 9.1.1. First suppose that A� i=Ai for each i # I.
Define \i # I, D1

i #3i_T 1
i _Ai , and for r=2, 3, ..., Dr

i #[({r
i , qr&1

i ) #
T r

i_Qr&1
i | ,r&1

i ({r
i )=hr&1

i (qr&1
i )]. The restriction in the definition above
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(for r�2) requires that {r
i and qr&1

i have the same associated (r&1)th
order Harsanyi type. Suppose that for some r=1, 2, ..., we have the exist-
ence of a function F r

j : Dr
j � Qr

j for all j # I such that

(i) if r=1 and q1
i =F 1

i (%i , {1
i , ai) then h1

i (q1
i )={1

i and (abusing
notation) ai= f i*(%i , q1

i ); and

(ii) if r�2 and qr
i =F r

i ({r
i , qr&1

i ) then hr
i (qr

i )={r
i and ,r&1

i (qr
i )=qr&1

i .

We now construct a function F r+1
i . To this effect fix any ({� r+1

i , q� r
i ) #

Dr+1
i . If r�2, define +� r+1

i to be the unique probability distribution over
3&i _A&i_Qr&1

&i _T r
&i_Qr

&i obtained as follows: First pick (%&i , a&i ,
qr&1

&i ) via q� r
i ; next, conditional on (%&i , a&i , qr&1

&i ) pick {r
&i via {� r+1

i ( } | %&i);
and finally conditional on (%&i , a&i , qr&1

&i , {r
&i), pick qr

&i=F r
&i ({

r
&i , qr&1

&i ).
If r=1, +� r+1

i is constructed as above except that we eliminate all references
to qr&1

&1 and Qr&1
&i and replace F r

&i ({
r
&i , qr&1

&i ) with F 1
&i (%i , {r

&i , a&i).
Define q� r+1

i #F r+1
i ({� r+1

i , qr
i ) to be the marginal of +� r+1

i on 3&i_A&i_
Qr

&i . The claim below will imply that F r+1
i maps Dr+1

j � Qr+1
j and

satisfies the induction hypotheses for r+1. From the hypotheses of
Proposition 9.1 we have the existence of the function F r

j for r=1. Hence by
induction such functions exist for all r.

Finally, for any {i=(%i , {1
i , {2

i , . . .) # Ti and ai # Ai , define Fi ({i , ai)=
(%i , q1

i , q2
i , . . .) where q1

i =F 1
i (%i , {1

i , ai) and for r�2, qr
i =F r

i ({r
i , qr&1

i ). It
should be clear that Fi : Ti_Ai � Qi and the conclusions of Lemma 9.1.1
hold. It should also be clear that we can replace Ai with the subset A� i

everywhere in the proof to obtain Lemma 9.1.1 for [A� i]i # I .

Claim. (a) hr+1
i (q� r+1

i )={� r+1
i and (b) ,r

i (q� r+1
i )=q� r

i .

Proof. (a) Fix any S�3&i_T r
&i . Then for r�2, (from the definition

of hr+1
i ) hr+1

i (q� r+1
i )(S)=q� r+1

i ([(%&i , hr
&i (q�

r
&i)) # S]) (so from the definition

of q� r+1
i )=+� r+1

i ([(%&i , hr
&i (F r

&i ({
r
&i , qr&1

&i ))) # S]) (and from the induction
hypothesis on F r

&i) =+� r+1
i ([(%&i , {r

&i) # S]) (so from the construction of
+� r+1

i ) ={� r+1
i (S). Hence we have shown part (a) of the claim for r�2. The

situation for r=1 is similar with obvious changes in notation. Part (b)
follows in a manner similar to part (a). K

Proof of Proposition 9.1 (Cont'd). Define 00 #3_>�
n=1 An_Zn ,

01 #>�
n=1 Tn_Qn and 0#00_01 . We will first define for each |0 # 00

an element |1(|0) # 01 . We will then define +i to be the measure over 0
obtained by first choosing |0 via PAZ then choosing |1 via |1(|0). Clearly
the marginal of +i on 00 is PAZ as required by the proposition. It only
remains to show that we can construct |1(|0) # 01 ``consistently.''

So fix an |0=(%, a1 , z1 , a2 , z2 , . . .) # 00 . Given %=[%i]i # I , pick for each
i # I any {i1 # Ti which has an associated attribute vector %i . Given ({i1 , ai1)
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and referring to Lemma 9.1.1 define qi1=F1({i1 , ai1). We proceed by
induction. Suppose for some N we have defined ({in , qin) for n=1, ..., N,
with the property that qin=Fi ({in , ain) for n=1, ..., N. We will assume that
the probability law of the observation process is common knowledge.
Omitting the details (see [23]) this means we can talk about agent i 's
belief hierarchy over 3&i_A&i conditional on the observation of ziN ,
qiN( } | ziN) # Qi . Define {iN+1 #hi (qiN( } | zN)) to be the induced belief
hierarchy over % and use Lemma 9.1.1 again and define qiN+1=
Fi ({iN+1 , aiN+1). Hence by induction we obtain the sequence [qin , ain]�

n=1.
In particular we have the element |1(|0) # 01 alluded to earlier. It should
be clear that with this definition of |1(|0) and the earlier defined +i for
i # I, +i is an ex ante subjective belief of agent i over 0 and that we obtain
the conclusion of Proposition 9.1. K

Proof of Proposition 9.2. Define

Ln #ln &n �(1&&n)&ln &1 �(1&&1). (9.2.1)

Define for each integer J, B j#[Ln�&J infinitely often], and B#
U�

J=1BJ. Let Bt and BJt denote the complements of the sets B and BJ,
resp. Then Bt=��

J=1 BJt=[limn � � Ln=&�]. However, Ln � &�
implies that &n � 0. Part (a) of the claim below then implies that +*(B)=1.
Part (b) of the claim implies that on B, lim supn � � Ln=�, which in turn
implies that lim supn � � &n=1 and hence from (9.1) that lim supn � � yn=1.
Very similar arguments imply that lim infn � � &n=0 and lim infn � � yn=
2�3 with +* probability one. The claim therefore concludes the proof of
Proposition 9.2.

Claim 1. Outside of a set of sample paths with +*-probability zero,
(a) &n does not converge; and (b) for each integer J, on the set BJ,
lim supn � � Ln=�.

Proof of Claim. First some preliminaries. Under the normality assump-
tions on [=n]�

n=1 , one may use Bayes rule to obtain

Ln+1 =Ln&(1�2)[[ pn+1&(:$&1�3)]2&[ pn+1&(:"&1�3)]2]

=Ln+5�54& yn+1 �9+=n+1 �3. (9.2.2)

Fix any constant K, and define

dN #3(K&LN&5�54+ yN+1 �9). (9.2.3)

Define F*N #_([=n , yn]N
n=1 , yN+1) to be _-field generated by the specified

variables for any N�1. Then (9.2.2) implies that Prob(LN+1�K | F*N)=
Prob(=N+1�dN | F*N), which, since =N+1 is independent of F*N , is equal to
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Prob(=N+1�dN). From the ``conditional'' Borel-Cantelli lemma (see [9,
p. 26]) we may conclude that on each sample path,

:
�

N=1

Prob(=N+1�dN)=�

implies that [LN+1�K] occurs for infinitely many N. (9.2.4)

(a) From (9.1) and the fact that agents are identical, to prove (a) it
clearly suffices to prove that yn does not converge. Fix any sample path
and suppose, per absurdem, that on that path the aggregate output yn

converges to some value y� . Define, along that sample path, p� � #
limN � � (1�N) �N

n=1 pn . Denote by fN( p1 , ..., pN | :) the density or
likelihood function of the i th agent's beliefs of [ p1 , ..., pN] conditional on
the intercept parameter : and define

M(:)# lim
n � �

(1�N) ln fN( p1 , ..., pN | :)

and

A� #[: # (:$, :") | M(:)= Sup
% # (:$, :")

M(%)].

Then, using the strong law of Large numbers to set (1�N) �N
n=1 =n=0, one

may show that

p� �=:*& y� �3, (9.2.5)

and

A�= inf
: # (:$, :")

[ p� �&(:&1�3)]2+terms independent of :. (9.2.6)

Applying [32, Theorem 1], we may conclude that agent i 's limiting beliefs
will have support in the set A� , the ``asymptotic carrier.'' We shall obtain
a contradiction by showing that A� {[:$], A� {[:"] and A� {[:$, :"].

First suppose A�=[:$] on some sample path. Then &n � 1, so from
(9.1), yin � 1 and from (9.2.5) p� �=7�9. Hence [ p� �&(:$&1�3)]2=4�81
and [ p� �&(:"&1�3)]2=1�81 which is a contradiction to the fact that
A�=[:$]. So A� {[:$]. Similar arguments show that A� {[:"].
Finally, suppose that A�=[:$, :"]. Then [ p� �&(:$&1�3)]2=[ p� �&
(:"&1�3)]2 so p� �=5�6. Then (9.2.5) and (9.1) imply that

y�=5�6 and lim
n � �

&n=1�2. (9.2.7)

Define L� � #&ln &1 �((1&&1). Then from (9.2.7) and (9.2.1), limN � � LN=
L� � . Fix any $>0, define K=L� �+$ and let dN be as in (9.2.3). On any
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sample path where (9.2.7) holds, limN � � dN � 3$ so Prob(=N+1�dN) �
P(=1�3$)>0. We therefore conclude from (9.2.4) that on such a sample
path LN+1�L� �+$ infinitely often. This contradicts the initial assertion
that limN � � LN � L� � . Hence A� {[:$, :"].

(b) Fix any K>0 and let dN be as in (9.2.3). From (9.1), yn�1.
Hence on the event [LN� &J], if we define d� #3[K+J&(5�54)+(1�9)]
then dN�d� . So Prob(=N+1�dN)�Prob(=1�d� )>0. Since the event
[LN�&J] occurs infinitely often on BJ, (9.2.4) implies [LN+1�K]
occurs infinitely often. Since K is arbitrary this implies part (b) of the
claim. K
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