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INTERNATIONAL ECONOMIC REVIEW 
Vol. 30, No. 3, August 1989 

OPTIMAL CONTROL OF AN UNKNOWN 
LINEAR PROCESS WITH LEARNING 

BY NICHOLAS M. KIEFER AND YAW NYARKO1 

Optimal control of a linear process with unknown parameters is considered 
when the horizon is infinite and rewards are discounted. Active learning 
strategies are considered, i.e., agents consider the information value of 
possible actions as well as current reward. Distributional assumptions are 
minimal in that no restriction to conjugate families is made. Convergence of 
beliefs and actions is established. 

1. INTRODUCTION 

Rational expectations models raise naturally the question of learning. The 
hypothesis that agents process information efficiently in an effort to learn about 
their environment is much stronger than the hypothesis that profit opportunities do 
not systematically go unexploited. However, the efficient information-processing 
hypothesis is itself much weaker than the hypothesis that agents actively seek to 
learn about their environment, even when learning is costly. This is the case known 
as "active learning." A natural modelling strategy is to assume that agents, faced 
with a tradeoff between current-period reward and information generation, allocate 
their efforts optimally given their beliefs about the economy. This turns out to be a 
difficult problem to study, and we focus attention in this paper on the optimizing 
behavior of an agent in an economy in which his behavior can generate information. 

For simplicity the process that we study is the linear regression process with 
independent errors. The agent expresses his beliefs about unknown parameters, 
which can include parameters of the "error" process as well as regression 
coefficients, in the form of a probability distribution. At date t the agent chooses an 
action on the basis of his beliefs at that date. The action is chosen taking account 
of the one-period reward resulting from the action and of the value of the expected 
information gain from that action. After the action is taken an outcome is observed. 
The outcome, together with the action, add to the agent's stock of information 
about the process generating the data. We assume that the agent processes this 
information in accordance with the laws of probability, i.e., by Bayes' Rule. In this 
paper we are concerned with the existence of the optimal strategy, with the limiting 
behavior of the sequence of the agent's beliefs, and with the limiting behavior of the 
optimal action. 

The linear structure has been used before in economics to study the question of 

l We thank David Easley and Ingmar Prucha for helpful discussions on the topic treated here. Related 
material has been presented at the NBER-NSF Seminar on Bayesian Inference, the University of Iowa 
and the Conference on Dynamic Econometrics at Austin, Texas. We are grateful to participants for their 
suggestions. This research is supported in part by the NSF. 
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learning about parameters when the regression is subject to control by Taylor 
(1974), who studies (essentially) a simple linear regression model with known 
intercept and unknown slope; by Anderson and Taylor (1976) who study the 
problem with both slope and intercept unknown using a simulation experiment; and 
recently by Jordan (1985), who studies analytically the problem with unknown 
slope and intercept and gives conditions under which learning occurs (in the sense 
that parameter "estimates" are consistent). All of these papers consider the 
least-squares certainty-equivalence control rule with sequential updating. With this 
strategy least squares estimates of the parameters, based on past data, are 
substituted for true values in the one-period reward function and the action 
maximizing this reward function is taken. Then, when the outcome is observed the 
least-squares estimates are updated. A potential drawback of the least squares 
control rule is the substitution of least-squares estimates for true parameter values. 
It is natural to suspect that a simple improvement over this rule can be obtained by 
substituting the action which maximizes expected reward, where the expectation is 
taken over a distribution for the parameters, for the action which maximizes reward 
conditional on the least-squares estimates. For the purpose of comparing strategies, 
one might interpret the sampling distribution of the least-squares estimates as the 
appropriate distribution. This strategy is suggested by Zellner (1971). Harkema 
(1975) compares the certainty-equivalence and minimum expected loss rules and 
finds the latter superior in a problem with quadratic loss. Of course, neither of these 
strategies is likely to be optimal when rules which take account the information 
value of actions are considered. Other related work includes Chow (1981) and 
Prescott (1972). 

Both of the strategies described allow only "passive" learning, so they might be 
expected to be inferior to a strategy which allows for "active" learning, i.e., a 
strategy which considers the information value of an action at each date. Our 
approach studies the "full" optimization problem, taking account of the informa- 
tion value of actions. Thus our policies, though difficult to calculate must do at least 
as well as the least-squares rule, and in view of Harkema's results can be expected 
to do better. One would expect that considerations involving information relevant 
to future decisions will play an important role when current information is sketchy 
and the future is not heavily discounted. These comments are supported by the 
example of Section 6 and by the related analysis of Easley and Kiefer (1988). 

The formal analysis proceeds as follows. Section 2 sets up the general frame- 
work, illustrating the definitions with the "normal-normal" example. We stress that 
the results of this paper make no use of specific distributional assumptions or 
conjugate families, the "normal-normal" example is used only to illustrate the 
definitions and results. We define partial histories as sequences of actions, 
outcomes and beliefs; admissible partial histories are partial histories in which the 
sequence of beliefs evolve according to Bayes' Rule. We make assumptions on the 
utility function and define the reward (expected utility) function. The value function 
is defined, along with the optimal policy. Section 3 shows that stationary optimal 
policies exist, and that the value function exists and satisfies the usual functional 
equation. In Section 4 we consider the limiting behavior of the sequence of 
posterior distributions. We establish, using a Martingale convergence argument the 
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weak convergence of the sequence of beliefs. The limit distribution need not be 
point mass at the true values and it need not be centered at the true parameter 
values. Simplifying to the simple (one x variable) regression process, we obtain 
some properties of the class of posterior distributions which can arise as limits. In 
Section 5 we establish the result that the sequence of actions converges, and that 
the limit action is the optimal one-period action for the limit beliefs. Section 6 
specializes to a "normal-normal" example, and illustrates that limit beliefs need not 
be centered at true values. This case arises for sufficiently low, but nonzero, 
discount factors. Proofs are primarily given in the Appendix. 

Before turning to the formal analysis, we note that our results concern the 
optimizing behavior of an economic agent acting in an uncertain environment when 
there is a possibility of taking actions in order to generate information. We have 
seen that there is a trade-off between immediate reward and information accumu- 
lation. Implications for the amount of information revealed in economic equilibrium 
are not pursued here. Equilibrium with agents "learning" by using least-squares 
estimates of linear models has been studied recently by Anderson and Sonnen- 
schein (1985). That paper establishes the existence of a rational expectations 
equilibrium but abstracts from dynamics and from the question of active versus 
passive learning on the part of agents in the economy. Blume and Easley (1984) 
study a dynamic equilibrium model in which agents process exogenous and 
predetermined data optimally. They find that the market process generates data 
which allow consistent estimation of the parameters of their economy when the 
parameter set is discrete. That paper contains further references to the literature on 
"revealing rational expectations equilibria." It seems a sensible research strategy to 
try to incorporate active learning into an equilibrium model. 

2. THE MODEL: STRUCTURE, UNCERTAINTY, POLICIES AND REWARDS 

In this section we sketch the general framework we wish to study and establish 
a specific example, the normal simple regression model with known variance and a 
normal conjugate prior distribution, which we will carry along as a particular 
application and which we will treat in Section 6. The example is closely related to 
that studied by Anderson and Taylor (1976), and Jordan (1985). Again we stress that 
the example is used to illustrate the terminology and results, and is not required for 
any of the main results. 

Let ?l' be a complete and separable metric space, let F' be its Borel field, and (?V, 
F', P') a probability space. Define on (Q', F', P') the stochastic process {Et-, the 
shock process, which is unobserved by the agent. The shock process is assumed to 
be independent and identically distributed, with the common marginal distribution 
p(Et I O) depending on some parameter, P in RI, which is unknown to the agent. We 
assume that the set of probability measures, {p( I 0P}, is continuous in the 
parameter P (in the weak topology of measures); and that for any P, f 8p(d I O) = 

0. Let X, the action space, be a compact subset of Rk. Define 0 = R' x Rk x R" 
to be the parameter space. If the "true parameter" is 0 = (a, 8, 0) E 0, and the 
agent chooses an action xt E X at date t, then the agent observes yt, where, 
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(2.1) yt =a a + fxt + ?t 

and where Et is chosen according to p( I @. 
Our example is the simple linear regression model with unknown slope and 

intercept and with the Et independent draws from the standard normal distribution. 
In our example ?' is R', F' is the collection of Borel sets on RX, and P' is the 
infinite product of independent univariate normal disitribution with mean zero and 
variance one. There is no unknown parameter P of the distribution of ?, but an 
example of the more general case could be obtained by letting the variance of ? be 
unknown. The action space X in the example is a closed interval in R'. The 
parameter space 0 is R2, corresponding to the unknown slope and intercept in the 
linear equation generating y: 

yt = Ya + fxt + Et. 

Let 0 be the Borel field of 0, and let P(O) be the set of all probability measures 
on (El, 0). Endow P(O) with its weak topology, and note that P(O) is then a 
complete and separable metric space (see, e.g., Parthasarathy 1967, Ch. II, 
Theorems 6.2 and 6.5). Let j-t0 E P(O) be the prior probability on the parameter 
space, with finite first moment. 

The agent is assumed to use Bayes' rule to update the prior probability at each 
date after any observation of (xt, yt). For example, in the initial period, date 1, the 
prior distribution is updated after the agent chooses an action x 1, and observes the 
value of y 1. The updated prior, i.e., the posterior, is then j/t I = F(x 1, y , -to), where 
F: X x R 1 x P(O) -> P(O) represents the Bayes' rule operator. If the prior, /-0, has 
a density function, then the posterior may be easily computed. In general, the 
Bayes' rule operator may be defined by appealing to the existence of certain 
conditional probabilities (see the Appendix). Under standard conditions the oper- 
ator F is continuous in its arguments, and we assume this throughout. Any {xt, yt} 
process will therefore result in a posterior process, {utt}, where for all t = 1, 2, . . .. 

(2.2) u = R(xt, yt, A, t- 1) 

The prior probability for our example is the bivariate normal distribution for a 
and 3, 

p(a, /31 ao, 10 lo) = n((p)o, to). 

This is the conjugate prior for our model, so all subsequent distributions 1ut will also 
be normal distributions. We index these distributions by their parameters (at, 13t, 

It) and note that the updating rule corresponding to (2.2) is (with Xt = (1, xt)) 

,+ = I - YX;,(I + XyX,)-lXy, 

( 1t = X,+ I[XY, + X, 1()t] 

see, e.g., Zellner (1971, Section 3.2.3). 
Let H, = P(O) x IIHi= I [X x R x P(e)]. A partial history, h, , at date n is any 

element hn = (-o0, (x1, Y1, A1,). .., (x,n1,, Y,1-i An,)) E H,,; h, is said to be 
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admissible if (2.2) holds for all t = 1, 2, ..., n - 1. Let H, be the subset of Ht 
consisting of all admissible partial histories at date n. 

A policy is a sequence T = {7t-t}'= , where for each t - 1, the policy function it: 

Ht -> X specifies the date t action xt = iTt(ht), as a Borel function of the partial 
history, ht in H., at that date. A policy function is stationary if 1t (ht) = g(Ictt) for 
each t, where the function g( ) maps P(?) into X. 

Define (Ql, F, P) = (0, 0, j-t0) X (?V, F', P'). Any policy, aT, then generates a 
sequence of random variables {(xt(w), yt(w), j It(W)}l on (Ql, F, P) as described 
above, using (2.1) and (2.2) (the technical details are stated in the Appendix). 

For any n = 1, 2, ..., let F, be the sub-field of F, generated by the random 
variables (h,,, x,2). Notice that x,, is F,,-measurable but y,, and nt,, are not 
F,-measurable. Next define F_ = V OF,, the o-algebra generated by h h 

We now discuss the utility and reward functions and define the optimality 
criterion. Let u :X x R' -> R' be the utility function, and, in particular, u(xt, yt) is 
the utility to the agent when action xt is chosen at date t and the observation yt is 
made. We assume, 

(A. 1) u is uniformly bounded and continuous. 

The reward function, r :X x P(0) -> R', is defined by 

(2.3) r(xt, t _l = f f u(xt, yt)p(d, tI o)u_ 1(da df3 do) 

whereYt= y a + fxtx ? E. 

Let 6 in (0, 1) be the discount factor. Any policy X generates a sum of expected 
discounted rewards equal to 

(2.4) V(-to) = f E I r(xt(c), At,- I(o)) P(dw) 
, = I 

where the (xt, jut) processes are those obtained using the policy ,T. A policy ,T* is 
said to be an optimal policy if for all policies X and all priors j-to in P(0), 

(2.5) VW*(/-to) VT (y o). 

Even though the optimal policy, ,T* (when it exists) may not be unique, the value 
function V(/to) = V,,.(DctO) is always well-defined. 

3. EXISTENCE OF A STATIONARY OPTIMAL POLICY 

We now indicate that stationary optimal policies exist, and that the value 
function is continuous. 

THEOREM 3.1. A stationary optimal policy g: P(O) X exists. The value 
function, V, is continuous on P(O), and the following functional equation holds: 
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(3.1) V(/to ) = max r(x 1, j- () + 6 f V(c t)p(de I I 0) to(da do3 df') 
V C X 

where F (x= y1',, Ao) and y =a + , x + , x + 8 I, and There the integral is 
taken over 0 x R l. 

PROOF. Let S f: P(?) -> R If is continuous and bounded}. Define T: S -> S by 

(3.2) Tw(,t) = Max {E(x, mut) + 6 i )p(d.e I I 0)1t(da d/3 do)} 
x C X 

where utX = F(xyi, jyt) andyl = a + 3 x + ? I. One can easily show that for w E S, 
Tw E S; and that T is a contraction mapping. Hence there exists a v E S such that 
v = Tv. Replacing wv with v in (3.2) then results in (3.1); and since v E S, v is 
continuous. Finally, it is immediate that the solution to the maximization exercise 
in (3.2) (replacing wv with v) results in a stationary optimal policy function (see 
Blackwell 1965, or Maitra 1968 for the details of the above arguments). Q.E.D. 

We assumed in condition (A. 1) that the utility function it was uniformly bounded. 
If we relax this and require only that it be bounded above then Theorem 3.1 above 
still holds except that we can now assert only the upper semicontinuity of the value 
function. (And, of course, we have to consider the possibility that some or all 
policies from an initial prior may yield total discounted return of -oc.) Consult 
Schal (1975) for details. 

4. CONVERGENCE OF THE POSTERIOR PROCESS 

In this section we study the convergence properties of the posterior process, 
{,'4' for arbitrary (i.e., not necessarily optimal) policies. 

The main results of this section may be described as follows. In Theorem 4. 1, we 
show that the posterior process always converges (in the weak topology of 
measures), with probability one. However, the limiting probability, j may or 
may not be concentrated on the true parameter. Having established the general 
convergence result, we proceed by simplifying the model a little (in particular, we 
assume that the distribution of shocks is known, and further that k = 1, so that we 
have a simple regression equation y = a + O3x + 8). Under this simplification, we 
are able to provide some characterization of the limiting distribution. In particular, 
we show that if, for some w in Q, x, (w) does not converge, then the limiting 
posterior distribution, for that w in Q, is concentrated on the "true" parameter 
value. Alternatively, if xt (w) does converge, to some x(w) say, the posterior process 
converges to a limiting probability with support a subset of the set {(a', 3'),: a' + 
f3'x(w) = a + f3x(w)}, where a, /3 represent the "true" parameter values. (If the 
posterior process is a sequence of normal distributions, then this implies that the 
limiting distribution has a singular variance-covariance matrix.) 

First we prove that under the very general conditions of Section 2 and 3 above, 



OPTIMAL CONTROL WITH LEARNING 577 

the posterior process converges for P-a.e. w in Q, to a well-defined probability 
measure (with the convergence taking place in the weak topology). 

Note that for any Borel subset, D, of the parameter space 0, if we suppress the 
co's and let, for some fixed w, jut(D) represent the mass that measure jct(w) assigns 
to the set D, then 

(4.1) yt(D) = E[l~ IE0 D I Ft] 

Define a measure /u , on 0 by setting, for each Borel set D in 0, 

(4.2) jtt .(D) = E[ Ie E D}i F.] 

In the theorem below we indicate that /ut is the limiting posterior distribution. 

THEOREM 4.1. The posterior process {at J converges, for P-a.e. W in Q., in the 
weak topology, to the probability measure At. 

Interpreted in the context of our example, Theorem 4.1 establishes the conver- 
gence of the sequence of parameters of "beliefs," {la t13 t, t}. Convergence in this 
specific context is established by Easley and Kiefer (1986) using direct calculations 
based on the updating formulas given in Section 2 above. Note that the theorem 
says nothing about what the sequence converges to: in particular the limiting means 
need not equal true values and the limit variance does not necessarily go to zero. 

We now introduce a few simplifying assumptions, to enable us to characterize 
the convergence properties of the posterior process. These assumptions reduce the 
model to the situation of a simple regression equation. In particular, we suppose 
that Condition (S) holds: 

CONDITION (S). The shock process has a distribution which is known to the 
agent, and which possesses finite second moment; and k = 1, so that the action 
space X is a subset of R 1. 

In Theorem 4.2, we show that if the xt process does not converge then the 
posterior process converges to the point mass on the true parameter value. Note 
however that nonconvergence of the xt process is not necessary for convergence of 
At to point mass. 

Let B = {w: xt ((w) does not converge}, and let 1 0 be the point mass at 0. 

THEOREM 4.2. For j- 0-a.e. 0 in 0, the posterior process, b t((w), converges to 10 

for P -a.e. w in B. 

Define on B C, the set where xt (w) converges, x(w) = limp, xt (w). In Theorem 
4.3, it is shown that if the xt process does converge, to x(w), the posterior process 
converges to a limiting probability with support a subset of the set {(a', (3'): 
a' + /3'x(w) = a + /3 x(w)}, where a, ,3 represent the "true" parameter values. 
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THEOREM 4.3. For ,uo-a.e. 0 = (a, ,3) in 0, the posterior process ,ut(w), 
converges to a limiting distribution, ,u(w), with support a subset of the 
set {(a', /'):a' + 8'x (w) = a + /x(w)}, for P-a.e. w in BC. 

Theorem 4.2 interpreted in terms of our example shows that, if the { xt} sequence 
does not converge then {a,, /t.} converges to the true values and {Et} converges to 
the zero matrix. Theorem 4.3 shows that, if the {xt} sequence converges, to x say, 
then the limiting distribution is singular with support on the line a' + /3'x = a + f3x 
where a and ,3 are true values. Essentially, when x is fixed, one learns the mean of 
y corresponding to that value of x. 

5. OPTIMIZATION, LIMITING BELIEFS AND POLICIES 

In this section the implications of optimizing behavior for the sequences 1tt} of 
beliefs and { xt} of actions are considered. We will be particularly concerned with 
the limiting or "long-run" beliefs and policy. 

Note first that convergence of beliefs was established, in Theorem 4.1, for an 
arbitrary { xt} sequence (i.e., without taking into account the underlying maximi- 
zation problem). It therefore makes sense to ask what action (or actions) x 
corresponds to the limiting beliefs ,. 

Theorem 5.1 establishes that the limit action is the action which maximizes single 
period reward for limit beliefs. 

We shall now impose the following strict concavity assumption on the reward 
function: 

(A. 2) For all priors /, in P(O), r(x, /,) is strictly concave in x. 

THEOREM 5.1. The limit action x = limn to. x, exists, is unique (for given Do) and 
maximizes the one-period reward, r(x, , ), for limit beliefs jc . 

Using Theorem 5.1 with Theorem 4.2 we observe that the optimal action 
converges (to x) and the agent learns the value of a + (3 x. It is tempting to conclude 
that the agent has solved the information problem because even though the agent 
does not know a and /3, the quantity a + ,3x is known. The question however is 
whether x is indeed the correct action to take. The example of Section 6 below 
indicates that x may be the "wrong" action. 

6. EXAMPLES 

There are a handful of examples in the literature in which incomplete learning is 
optimal. The most familiar is no doubt the bandit framework used by Rothschild 
(1974) to show that a firm which could charge one of two prices each period, and 
faced an unknown purchase probability corresponding to each price, could end up 
charging the wrong price infinitely often. The classic bandit problem does not fit 
into our framework but the flavor of the result is similar. McLennan (1984) studied 
an example in which a monopolist knew the unknown demand curve he faced took 
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one of two values. In this example it can be optimal for the expected discounted 
profit maximizing monopolist to fail to learn which curve he faces. This example fits 
exactly into our framework, though it involves the special case of a discrete 
parameter space. Kihlstrom, Mirman and Postlewaite (1984) construct a related 
example involving a discrete parameter space. 

Here we give a set of sufficient conditions in which incomplete learning is optimal 
in a problem with a continuous parameter space. The argument proceeds as 
follows: first, we specify a simple (quadratic) utility function, and using the normal 
data generating process and normal conjugate prior calculate the reward function. 
We then look for a candidate limiting belief-policy pair which does not exhibit 
complete learning. This involves finding an action x- and a set of beliefs ,u such that 
x- maximizes r(, /,) and Jt satisfies Jt = F(-, y, ,) for all y. In addition ,u must 
satisfy the constraint that the agent knows a * + /3*x- where a *, ,3* are the true 
values. In our example there are many such belief-policy pairs. Finally, we verify 
under an additional assumption that our candidate belief-policy pair is optimal. The 
normal-normal model used in this example is studied in detail by Easley and Kiefer 
(1986). 

Example of a Stationary One-Period Maximizing Policy. Consider the utility 
function 

U(X, y) - (y - y*)2 - x2 

where y = a + ,3x + E and ? - n(O, 1). Let /, = n(m, L) where in = (a, 3)' is the 
vector of means and L; = {Oij}, i, j = a, /3 is the covariance matrix. The reward 
function is then 

-(X, i) 
= -12- - - x2o-_ X2 

- 2-,(3x + 2y*a- + 2y*,3x - x2 

and the policy which maximizes current reward is x = (y*,3 - a,(3 - Jab/(1 + ,2 

+ O-.03). Looking back to the updating formulas in Section 2 we note that the 
requirement that /, = F(r, y, /,) for all y amounts to the constraint (1 f)l = 0, or 

(JCa a + o X- 0= and o-aC8 + oJX6'6 - = 0. Finally, the agent must learn the value of 
y corresponding to the limiting x, so our candidate solution (-, /,) must satisfy 
a& + ,3- = a * + ,3 *x where a * and 3 * are true values. 

Given values of a* and /3* we can find (x, ,u) pairs satisfying these conditions. 
One example is 

(6. la, b) 1=, 0r = - (}y* - ay *)!(/3* + 1), 

(6.1c, d) 0aa = (y* - a*)2/(/3* + 1)2, 1, 

(6.1e) a = a* + [(/3* - i)(y* - a*)/(/3* + 1)] 

(6.If) x-= (y* - a*)/(,3* + 1). 

We now demonstrate that running the policy in 6. If is optimal for an agent whose 
beliefs are given by 6.1, for a sufficiently low discount factor under the assumption 
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that EV(F(x, y, /,u)) is twice differentiable with bounded (above) second derivative 
in x. This assumption is strong (though it can be relaxed somewhat) and should be 
shown from first principles, but we are currently unable to do so in general. The 
assumption can be shown to hold when the parameter space is discrete. Consider 
the function ?(x, /,u) = r(x, A) + 5EV(F(x, y, a,)); here the distributions /, are indexed 
by the parameters m and L, thus derivatives with respect to /, can be worked 
through with the usual rules, but for the present purposes it suffices to proceed 
purely informally and write expressions like V = (dVldl,). Clearly, 

V(ju) = max ?(x, 4). 
x E x 

The first order condition for the maximization problem is 

.x, /,() = r4jx, /,() + 5EV'(F(x, y, /,())F.c = 0 

where we have assumed that one can pass the derivative inside the expectation. 
Now, F(x, y, a) evaluated at (x, /,u) satisfying 6.1 does not depend on y, 
consequently V' can be taken outside the expectation. But new information is not 
expected to change current beliefs (if you expect your prior probabilities to change 
in a particular way you do not have the right prior), consequently EFS = 0. (Proof: 
EFr = d/dx EF = bdd x = 0.) Solutions (x, /_t) satisfying 6.1 also satisfy i v (x, /) = 

0 so the first-order conditions are satisfied for these solutions. The second 
derivative is 

d2 

O.v..(x, /) = r.j. (x, ,t) + 8 - EV(F(x, y, ,)). dx2 

Now rX does not depend on current x (it is -4 for the values in 6.1). Consequently, 
as long as d2EV/dlx2 is bounded above, 8 can be chosen sufficiently small so that the 
function 0 (x, /,u) is concave in x. Thus solutions to the first-order conditions (e.g., 
a solution satisfying 6.1) are indeed optimal. Note further that this action may be 
"wrong" in the sense that if the true values were known, the true values may be 
such that the agent may choose another action. 

A variation on the technique used in this example shows how one can generate 
for a strictly concave utility function a prior such that for all sufficiently small 
discount factors it is optimal to choose the one-period optimal action which has no 
information value and may also be "wrong" in the sense explained above. 

7. CONCLUSION 

We have analyzed the problem faced by an agent attempting to control a linear 
regression process when the parameter values are unknown. In this setting the 
agent is faced with a tradeoff: by varying the values of the regressors he can 
accumulate information about the unknown coefficients, at a cost in terms of 
expected current utility. How much experimentation is appropriate? We restrict 
our attention to the problem facing a single decision maker, but the answer is 
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clearly of interest to the question of the amount of information generated by 
movements in economic variables when some agents have market power. 

We show that the problem can be brought into the dynamic programming 
framework and that the value function satisfies the usual functional equation. We 
note that the optimal policies are typically different from the least-squares policies, 
and therefore offer an improvement over least-squares. We then turn our attention 
to the question of learning. To this end, we examine the asymptotic properties of 
the sequence of beliefs about the unknown parameters, that is, to the sequence of 
posterior distributions. This sequence is shown to converge almost surely. The 
limit distribution is not necessarily point mass at true values, nor indeed centered 
(in the sense of means) at the true values. In Section 4 we indicated that for an 
arbitrary (i.e., not necessarily optimal) action process there will be complete 
learning of the true parameter values if the action process does not converge, and 
there may be some (but possibly incomplete) learning if the action process does 
converge. In Section 5 we showed that the optimal action process converges (to the 
one-period optimal action under the limiting posterior distribution); hence we can 
not conclude anything about the learning of the true parameter vector in this case 
from the results of Section 4. From the example of Section 6, one can, in general, 
always find a prior probability on the parameter vector such that for sufficiently low 
discount factor the agent will choose the same totally uninformative action in each 
period. Hence at the level of generality considered in this paper, it seems that 
nothing more can be said about the question of learning. 

APPENDIX 

The Bayes' Rule Operator. 

Let P(dy' dOI x, At-) be the joint distribution on Rl X 0 obtained as follows: 
an element 0 in 0 is first chosen according to the probability ,t- 1; then, given this 
chosen value of 0 = (a, /3, 4), yt is chosen according to the relation, Yt = a + (3x, 
+ Et, where Et has the distribution p( 4)0. Next, define P(dy, Ix,, At-1) to be the 
marginal distribution of P(dyt dOIxt, At-1) on R1. We now apply Parthasarathy 
(1967, Ch. V, Theorem 8.1), to obtain the existence of a conditional probability 
measure on 0, F(dOlxy, At u), which, for fixed (x,, At-1) is measurable in yt, 
and where 

P(dyt dO Ixt, ,t_ ) P(dvtlx,, At,} F (dO xt, yt, At,}) 

The conditional probability, F(dOlxt, yt, bu,_,), defines the Bayes' rule operator, 
F(xt, yt, At-,). 

The Random Variables {x,, Yt, At}. 

We now provide the technical details behind the construction of the {x,, yt' ,?} 
processes. Recall ((, F, P) = (0, 6, /0) x ((2', F', P'). Any policy, ir, generates 
a sequence of random variables {(x,, Yt. , t)V I on ((2, F, P) as follows: first 
consider {e,} as a stochastic process on (Q, F, P), rather than ((2', F', P'), by 
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E, (w) = E,8(w') where w' is the second coordinate of w (recall (2 = 0 x fV'). ,u0 is 
given a priori; define x l (w) = 1ro (o), y I (w) = a + 3x 1 (w) + E I (w) and /, I (t) = 
F(x I (X), y I (X), bto), where a and ,3 are obtained from the first coordinate of ct (recall 
(2 = E0 x f'). Since both IT0 and F are Borel functions (recall F is continuous), we 
observe that x , y i and bti are (Borel measurable) random variables on (fQ, F, P). 

Next, if we suppose that the random variables xi, y i and uif have been defined for 
i = 1, . . ., t - 1, then we may define, inductively, xt, Yt' ,?t by putting ht(cw) = (/u0; 
(x I (c), y 1 (t), / j(c)). (xt1(&v), yt- I (c), 1t ,(ct))) and xt (c) = rt (ht (c)), yt () 
= a + /3xt(w) + Et (c) and 1t (c) = F(x,(w), yt(w), li (ct)) Since trt is Borel 
measurable, xt, yt, ,?t are (measurable) random variables. 

Proofs. 

PROOF OF THEOREM 4.1. Let U be the subclass of 0 made up of sets of the 
following kind: first, since 0 is separable, let {s,, s3, ... } be a separant; let B k 

be the ball of radius 1/n and center Sk; then define U to be the set of all finite 
intersections of the balls B , where k = 1, 2, ... and n = 1, 2, . One may check 
that U is countable. 

Next, for any fixed set D, 1t (D) = E[1 { D}I Ft], so using Chung (1974, Theorem 
9.4.8, p. 340), the sequence {bt (D)} can be shown to be a positive Martingale, and 
so the Martingale convergence theorem applies and we conclude that -t (D) 
converges with P probability one to g,(D). Since the set U is countable, we have 
that convergence holds on all of U, simultaneously, with P probability one. Then 
we check that U satisfies conditions (i) and (ii) of Billingsley (1968, Theorem 2.2, p. 
14), so, from that Theorem, lit converges weakly with P probability one. 

Hence the limit of 1t exists (a.e.). In the above paragraph we identified this limit 
with /,u on all sets D in the class U. Since every open set in 0 is countable union 
of sets in U, and since open sets generate the aX-algebra 6, it must be the case that 
the limit of 1t equals /,u<; (on all sets in 0). Q.E.D. 

Comment on Proof of Theorem 4.2. The idea behind the proof of Theorem 4.2 
is the following. Suppose first that xt(cw) = x' for all t and for all ct. Then yt(w) = 

a + x' + Et (@), and Itl-I at (w)ln = a + /3x' + It4~I8Etn. However, by the strong 
law of large numbers, lim .L1 Etln = 0, P-a.e., so if we define y' = It= L; 
yt(cw)/n, then y' =- a + ,3x'; and, in particular, the agent will learn that the true 
parameter will satisfy this relation, in the limit. Next, if x, (cv) does not converge, 
but alternates between two numbers, x' and x", it is obvious that applying the above 
argument first to the even sequence {x2t}jx 1 and then to the odd sequence 
{ x2tl}t l, the two equations y' = a + ,3x' and y" = a + ,3x" will be obtained, 
where y' = lime,1, 1/n Et'l- I r2t and y" = lim,1, 1/n I " 

I Y 2t- 1 from which one may 
compute the true parameters, a and /3. In this situation the agent will learn the true 
parameters in the limit. It is this idea which is behind the proof presented below. 

In the example above, notice we had to apply the law of large numbers first to the 
even time subsequence and then to the odd subsequence. In Lemma 4.2 below, we 
show that the law of large numbers may be applied to a very large set of time 
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subsequences. The rest of the proof involves setting up the machinery to use 
Lemma 4.2. 

PROOF OF THEOREMS 4.2 AND 4.3. Define 1{, } k 1 if {w E K} and equal to zero 
otherwise, where K is any subset of Q; we sometimes also write this as 1,k. 

LEMMA 4.2. There exists a set A in F with P(A) = 1, such that on for all rational 
numbers f and m, with f < in, on the set where 

I7= i1{e~x_}= 00, 

(A . 1 ) lim L;t =IE t t/ I t ? 

where I t = Ie , - l} 

PROOF. Fix an f and m with f < m. Note that for t' D t, Et, is independent of 
{1 1. E I1 t} where li = IeV rj1171 . Hence, from Lemma 3.3 below, we obtain that 
on some set A(e, m) with P(A(e, m)) = 1, (A.l) holds. Define A to be the 
intersection over all rational numbers f < in, of the sets A(e, m); then P(A) = 1 and 
A satisfies the conclusion of the Lemma. Q.E.D. 

LEMMA 4.3. Let {vt} be a sequence of independent random variables with mean 
zero and uniformly bounded variance. Let {zt} be a sequence of random variables 
such that for each t, t' with t' - t, vtt is independent of {z 1 j ... , zt}; then for almost 
evety realization with IT I Z I_ co, 

(A. 2) li >;= lztvt/;t = I Zt? 

PROOF. One applies Taylor (1974, Lemmas 1 through 3) with minor modifica- 
tions. 

PROOF OF THEOREMS 4.2 AND 4.3 (continued). To ease the exposition we shall 
assume that X = [0, 1]; since X is assumed compact this is without loss of 
generality. 

Let Q be the set of rational numbers in X, and let Y-(w) = lim sup xt (w) and x(w) 
= lim inf xt (w). We proceed to define two random variables h(w) and h'(wo) taking 
values in Q and such that on B, the set where xt does not converge, 
x(w) < h'(w) < h(w) <AT(w). Define the function h:X x X-- Q, as follows. First, 
any integer k = 1, 2, ..., can be uniquely written as k = 2z'-l + p, where ii = 1, 2, 
... I and 0 - p - 2?l-I - 1; so define Sk = (P + 1)/2"'-, where k = 2"' + p. The 
sequence {Sk} is therefore a sequence of rational numbers in X = [0, 1]. Define t(x, 
x') = inf {k: s k E (x, x')} if x < x', and t(x, x') = 0 if x - x'; and h(x, x') = st(Xx') 

with so = 0. Hence h takes values in Q, and one can check that h is Borel 
measurable. (In fact, to prove the measurability of h, note that t(x, x') = 

I{ x < ,1 } E1 rt where rt is the indicator function which equals 1 when Sk E (X, x')6 
for all integers k < t and s, E (x, x') and zero otherwise (with ri = 1). Since l{ x >' 
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and r, (for each t) are Borel measurable, we obtain the measurability of t(x, x'); the 
measurability of h then follows from h(x, x') = st(v. i) = IU=1 Sk'{t(v a')=k* 

Next, we define the random variable h(w) = h(x(w), x-(w)) (note the abuse of 
notation !). Since A and x are both F.,-measurable and h(x, x') is Borel-Measurable, 
we obtain that h(w) is F,-measurable. We have therefore constructed an F,- 
measurable random variable, h(w), taking values in Q, and such that on B, x(w) < 
h(w) <ix(w). By replacing A(w) with h(w), and repeating the above construction, we 
obtain an F,-measurable random variable, h'(w), taking values in Q, and such that 
on B, x(Z) < h'(w) < h(w). 

The true parameter vector satisfies 

(A.3) yt = a + Oxt + et 

Define 1, = /1 > v Sl I. Multiplying both sides of (A.3) by I, summing over t and 
dividing by ST = Et= 1 one obtains 

(A.4) YT= a+ 3XT+ ET 

where YT = It l ytl t/tT XT = Z/jl xod /ST and ET = Ztl ?t t/ST. From the 
definition of h note that h - x, 1 I infinitely often, hence Z' 1l, = x0; so from 
Lemma 4.2, E T > 0 as T x-> 0 a.e. on B. Taking the lim sup on both sides of (A.4) 
results in 

(A.5) y7=a + ofx' 

where 5T - lim sup YT and ' = lim sup X T. Repeating the above exercise, but 
replacing lt with 1, = 1 1o c v I'}, we obtain that (a.e. on B) 

(A.6) y a + PY 

where y = lim sup Y 7- Y T - t=1 YtlTL7', ST = =1 1 and x' is defined 
analogously. Hence if we define M = {(1W, f3'):Y = a' + f3'X' and y = a' + /3'x'} 
since wx' < h' < h < A', x' 7 r` so M consists of only one point, which from (A.5) 
and (A.6) must be the true parameter vector 0 = (a, ,) so 10, = 1 (a.e. on B). 
Since clearly 1 {0 E M I is F. -measurable 

(A.7) AXM * 1B = E[1{6 E M}IFi] l B = E[1 E M} * 1BI F.] 

= E[1 B I Fj = lBa.e. 

From (A.7), therefore, on B the limiting posterior distribution is concentrated on 
the true parameter vector (a.e.). This proves Theorem 4.2. 

To prove Theorem 4.3, we repeat the above exercise replacing T, (or l,) with 
1, =1 l v (which of course is equal to one!). On B", lim, x, = x (say) so 
if M = {(a', f3'):5T = a' + f3'x}, where Y = lim,, In It y" , then the true 
parameter vector 0 (a, /3) lies in M, and we may show, as in (A.7) that 

(A.7') AjL(M) * IB' = IB' a.e. 

from which Theorem 4.3 follows. Q.E.D. 
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PROOF OF THEOREM 5.1. Recall from Theorem 4.1 that limb. t,, = ut r exists 
for all sample paths. The sequence { x,} and {,u ,} satisfies for each t (simultaneously, 
a.e.) the functional equation 

(A. 8) V(/,u t - l) = -r(xt, /- t - i) + 

V( (x t, yit, /- t - 1))p (d-- I ) /t _tl(da do do). 

where yt = a + ftx, + t. Taking limits along any convergent subsequence gives 

(A.9) V(ft=) = r( x, / ) + 6 f V(F(, x y, -tj))p(de I 0) t<(da dfo do) 

where x is a limit point of the {x,} sequence. (In taking the limits one uses the fact 
that V is bounded and the integral in (A.8) is E[V(ft ,) I Ft- 1] to apply Chung 1974, 
Theorem 9.4.8). However, from Theorems 4.2 and 4.3, if - = a + /3 x- + a, the value 
y" = a + B x- is known (under F,), hence y = a + /3 x + E = y" + E becomes a white 
noise term (with mean y"); hence observing (x-, y5) yields no information so F(x, y, 
ft ) = A,, and (A.9) becomes 

(A.IO) V(At,) = r(x-, ftc) + 6V(f) 

Now we show that x- solves the problem 

(A. l 1) max r(x, ftc) 
x EX 

Suppose on the contrary that there is an x E X such that 

(A. 12) * ( x-, hug ) > r (x-, hug) 

Using the functional equation 

(A.13) V(ft) ) r(k, A ") + 6f V(f(kJ, X, ft))P(dE I O)ft(da do do). 

From Blackwell's Theorem (see e.g., Kihlstrom (1974, Lemma 1, p. 18)), since the 
experiment "observe (r, ,)" is trivially sufficient for the experiment "make no 
observations," we obtain, 

(A. 14) f V(F(., A, .t ))p(dE I ) A (da do3 do) _ V(Af). 

Hence, from (A. 12) through (A. 14). 

(A. 15) V(f a) > r ( r, At ) + 6 V(fa), 
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which is a contradiction to (A. 10). So x solves problem (A. 11); that is, x- maximizes 
the one-period reward r(x, At) for limit beliefs, Aj,. Since r(, fuk) is a strictly 
concave in x, x- must be unique. Q.E.D. 
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