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i. Introductlon 

Economic Agents operating in uncertain, stochastic environments can face a 

tradeoff between current period expected reward and accumulation of information of 

uncertain value. For example, a firm producing to meet uncertain demand might 

produce at the expected current reward maximizing output, based on his current 

beliefs about the form of the demand curve, or it might choose to experiment by 

varying output, thus taking short term losses in order to sharpen beliefs about the 

form of the demand curve. A parametric representation of the agent's problem is 

made by considering the utility function u(x,y) and the conditional density 

f(y[x,8). Here the random variable y is What the agent is trying to control 

(e.g., current period profits) and x is the control variable. The parameters 8 

of the conditional density of y given x are unknown, but the agent has opinions 

about 0 given by s distribution ~. ~e agent attempts to minimize the present 

discounted value of the stream o f  expected losses, EZ6tu(xt,Yt) , where the expec- 

tation is taken with respect to current beliefs. The problem is complicated by the 

fact that beliefs are updated from period to  period using Bayes Rule; consequently 

current period actions can be expected to influence future period beliefs. This 

introduces stochastic dynamics into the model. 

This paper considers the problem in the case in which the density f(yIx,0) is 

a location family. ~n this case the model can be written y - g(x,$) + c, where t 

is an i.l.d, random variable whose distribution may involve unknown parameters. 

When g(x,~) - x'$ the problem is one of controlling a linear regression process 

with unkno~ parameters over an infinite horizon. Many approximate control rules 

for this problem have been proposed, for example sequential least-squares estimation 

combined with one-period optimization conditioning on the current estimates. The 

analogous policy for the nonlinear model is clear. In practice several policies can 

work "well," though it is possible to compose examples in which the policy men- 
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t ioned, for example, is  eas i ly  improved. From an economic modelling point  of view, 

however, we are interested in the o~tlmal policy, and in the consequences for 

convergence of beliefs and policies of following the optlmal policy. Will it be 

optimal for an agent to learn the parameters (and thus converge to "rational 

expectations")? 

This paper gives general conditions hnder which the sequence of beliefs 

converges to a llm£t and the sequence of optimal policies converges to a limit. 

Under further conditions the limlt policy is the optimal one-perlod policy for limit 

beliefs. Conditions under which the limit belief is point mass at true parameter 

values, corresponding to consistent parameter estimates are more stringent and are 

still under investigation. 

Least-squares control rules in the linear regression model have been widely 

discussed and studied analytically by Taylor (1974) and Jordan (1985) and experi- 

mentally by Anderson and Taylor (1976). Improvements using a Bayesian approach were 

suggested by Zellner (1971) and studied by Harkema (1975). The optimal policy in 

the linear regression case has been studied by Kiefer and Nyarko (1987), who obtain 

results on coffvergence of beliefs and policies, convergence in a different class of 

models has been studied by Easley and Kiefer (198G). Results on optimal learning 

while controlling a stochastic process are collected along with an example in Kiefer 

(1988). 

2. The Decision Problem: Uncertainty. Policies and ~ewor~ 

In this section we sketch the general framework we wish to study. 

Let n' be a complete and separable metric space, let ~' be its morel field, 

and (O', ~' , P') a probability space. Define the stochastic process [ct) ® on 

(~', ~' , P'). The it are assumed to be independent and identically distributed, 

with the common marginal distribution p(¢tl() depending on some parameter, ( in 

R h, which is unknown to the agent. ~e assume that the set of probabillcymeasures, 

(P('l~}, is continuous in the parameter ~ (in the weak topology of measures); and 

that for any ~, f ¢ p(d¢]~) - O. Let X, the action space, be a compact subset 

of R k. Define 9 - Rm x R h to be the parameter space. If the "true parameter" 

is 0 - ($,() ¢ e, and the agent chooses an action x t c X at date t, then the 

agent observes Yt' where, 

Yt - g(xt'~) + it (2.1) 

and z is chosen according to P('I~). The function g is assumed measurable; 
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further restrictions are introduced implicitly through assumptions on the updatlng 

equation (2.2) and the reward function (2.3). 

One example i s  t h e  s imple  l i n e a r  r e g r e s s i o n  model w i t h  unknown s l o p e  and 

i n t e r c e p t  and w i t h  the  c t i n d e p e n d e n t  draws f rom the  normal  d i s t r i b u t i o n  w i t h  

mean ze ro  and v a r i a n c e  o~ I n  t h a t  example G' i s  R ~, 9 '  i s  the  c o l l e c t i o n  of  

Borel sets on R ~, and P' is the infinite product of independent unlvarlate 

normal distributions with means zero and common variance o 2 . The parameter ~ is 

the variance of z, o 2. The action space X is a closed interval in R I, The 

parameter $ z R 2 consists of the slope and Intercept of the regresslon. The 
1 space O is R 2 x R+. 

Let ~ be the Borel field of e, and let P(e) be the set of all probability 

measures on (e, ~ ). Endow P(e) with its weak topology, and note that P(e) is 

then a comple te  and s e p a r a b l e  m e t r i c  space  ( s ee  e . g . ,  P a r t h a s a r a t h y  (1967, Ch. I I ,  

Theorems 6 .2  and 6 . 5 ) ) .  Let  ~0 ~ P(e)  be the  p r i o r  p r o b a h i l l t y  on the  p a r a m e t e r  

space, with finite first moment. 

The agent is assumed to use Bayes rules to update the prior probability at each 

date after any observation of (x t, yt). For example, in the initial period, date 

i, the prior distribution is updated after the agent chooses an action xl, and 

observes the value of YI" The updated prior, i.e., the posterior, is then 

~i " r(Xl' YI' ~0 )' where r:x x R 1 × P(B) ~ P(B) represents the Bayes rule 

operator. If the prior, ~0' has a density function, then the posterior may be 

easily computed. In general, the Bayes rule operator may be defined by appealing to 

the existence of certain conditional probabilities, although some care is needed 

(see Diaconis and Freedman (19B6)). Under some conditions the operator r is 

continuous in its arguments, and we assume this throughout. Any {xt, yt] process 

will therefore result in a posterior process, {~t}, where for all t - 1,2,..., 

~'t- r(xt' Yt' ~t-i ) (2.2) 

n-1 
Let  Hn " P(O) x H IX x R 1 x P(O)}.  A p ~ r t ~ l  h i s t o r y ,  hn ,  a t  d a t e  n i s  

i - 1  

a~ element hn " (Mo'(Xl ' YI' ~I ) .... (Xn_l, Yn.l,~n.l )) t H ; h n is said to be 

a ~ i s s l b l e  I f  ( 2 . 2 )  h o l d s  f o r  a l l  t - 1 ,2  . . . . .  n - l .  Le t  H be the  s u b s e t  o f  
n n 

consisting of all admissible partial histories at date n. A vollov is a sequence 

- {~t):.l, where for each t ~ I, the policy function ~t:Ht ~ specifies the 

date t a c t i o n  x t - x t ( h t )  , as  a Bore l  f u n c t i o n  o f  t he  p a r t i a l  h i s t o r y ,  h t i n  
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Hi, at that date. A policy function is stationary if xt(h t) - g(#t) for each t, 

where the function g(,) maps P(O) into X. 

D e f i n e  (O, ~ , P) - ( e ,  ~ , pO ) x ( f i ' ,  ~ '  , P ' ) .  Any p o l i c y ,  z ,  t h e n  

generates a sequence of random variables [(xt(w), yt(w), # t ( ~ ) ) ~ . l  on (fl, -~ , P) 

as described above, using (2.1) and (2.2). See Ziefer and Nyarko (1987) for 

technical details. 

For any n - 1,2,..., let ~n be the sub-fleld of ~ , generated by the 

random variables (hn, Xn). Notice that x n is ~n -measurable but Y n and 
n 

are not F - measurable .ext daflno F - VLOF n 

Let u:X x R 1 ~ R 1 be the utility function, so u(xt, yt) is the utility to 

the agent when action x t is chosen at date t and the observation Yt is made. 

The reward function r:X x P(8) ~ R I, is defined by 

r(xt,#t, l) - IjRU(X t, yt)p(dctl~)pc.l(d#) (2.3) 

The inner integration marginalizes with respect to ¢, given the parameter ~, the 

outer integration is with respect to parameters. Assume that the reward function is 

uniformly bounded, continuously, and concave in x for given p. Note that this 

assumption restricts g(-,-), U(-,.) and P('I'). 

Let 6 in [0,1) be the discount factor. Any policy x generates a sum of 

expected discounted rewards equal to 

Vx(P O) " I ~ 6t'ir(xt(~), Pt.I(~))P(d~) (2.4) 
t-I 

where the (xt, pc) processes are those obtained using the policy ~. A policy 

is said to be an outimal volicv if for all policies . and all priors gO in 

w 
in P(8), Vx.(p0) ~ V (p0). Even though the optimal policy, ~ (when it exists) 

may not be unique, the value function V(p0) - V .(p0 ) is always well-defined. 

3. Existence o~ a Stationary Optimal Policy 

Straightforward dynamic programming arguments can be used to show that station, 

ary optimal policies exist and the value function is continuous. 

Theorem 3.1: A stationary optimal policy g:P(O) ~ X exists. The value 

function, V, is continuous on P(8), and the following functional equation 

holds: 
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v(~) - max {r(x, ~) + 6fV(~)p(ac[~)~(de)) (3.1) 

where ~ - P(x ,  y ,  ~) and y - g (x ,  ~) ÷ c, and where t h e  i n t e g r a l  i s  t a k e n  ove r  

R I x g .  

Proof: Let S - (f:P(O) ~ R [ f i s  c o n t i n u o u s  and bounded}.  

Define T:S ~ S by 

Tw(~) - max {r(x,~) + 6fV(~)p(d~[@)~(d0)) (3.2) 

x~X 

One can easily show that for w£S, TwoS; and that T is a contraction mapping. 

Hence there exists a yes such that v-Tv. Replacing w with v in (3.2) then 

results in (3.1); and since yeS, v is continuous. Finally, it is immediate that 

the solution to the maximization exerclse in (3.2) (replacing w with v) results 

in a stationary optimal policy function (see Blackwell (1965) or Maltra (1968) for 

the details of the above arguments). 

4. Convergence o f  the  P r o c e s s  {#t} .  

I n  t h i s  s e c t i o n  we p rove  t h a t  the  p o s t e r i o r  p r o c e s s  c o n v e r g e s  f o r  P - a . e  ~ i n  

G, to a well-deflned probability measure (with the convergence caking place in a 

weak t o p o l o g y ) .  

Note t h a t  f o r  any Bore l  s u b s e t ,  D, o f  the  p a r a m e t e r  space  O, i f  we s u p p r e s s  

the ~ ' s  and l e t ,  f o r  some f i x e d  w, p t (D)  r e p r e s e n t  t he  mass t h a t  measure  ~ t (w)  

a s s igns  to t he  s e t  D, t h e n  

~t(D) - E[I(o~D}]~ t] (4.1) 

Define a measure #~ on 9 by setting, for each Borel set D in 6, 

- E[I|@tD)[ ~] (4.2) 

The measure ~ is the limiting posterior distribution and is indeed a well-deflned 

probability measure. 

~eorem 4.1. The posterior process {~t) converges, for P-a.e. ~ in n, 

in the weak topology, to the probabillty measure p . 

Summary of Proof: Use 44.1) above to show that for any Bore1 set D in e, 

pc(D) is a Martlngale measure, establish that the sequence of probability 
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measures, ~t(w), for fixed ~, is tight using the assumption that the first 

moment of ~ is finite, then apply Prohorov's Theorem (e.8. , Billingsley 

(1968, Theorem 6.1)) to deduce that ~ is a probability measure. 

Note tha~ this result on convergence of beliefs is quite different from the 

standard consistency result looked for in econometrics. The Martingale Convergence 

Theorem allows us to establish convergence, but the limit measure ~ is a random 

variable, in the sense that it depends on the particular sequence of shocks real- 

ized. In a standard estimation problem, the limit result is that beliefs converge 

and the limit belief is independent of sample paths, and the limit belief is correct 

in the sense that ~ assigns point mass to the true parameter value. Standard 

results do not hold here because along any sample path for which beliefs converge, 

the sequence of actions {x t) may also be converging. But if actions converge too 

rapidly, they may not generate enough information to identify all the unknown 

parameters. One can construct examples in related problems in which this phenomenon 

occurs (see e.g., Kiefer (1988)). 

5. Ootlmizat~on and ~ml~ Belief~ and Actions 

In Theorem A.1, convergence of beliefs was established for an arbitrary {x t} 

sequence (i.e., without taking into account the underlying maximization problem). 

In this section we ask what action (or actions) x corresponds to the limiting 

beliefs ~®. 

Theorem 5.1 establishes that the limit action is the action which maximizes 

single period reward for limit beliefs. 

Theorem 5,1: The limit action x - llm x exists, is unique for given ~) 
t-~ 

and maximizes the one-period reward, r(x,~,), for limit beliefs ~ . 

Proof of Theorem 5.1: Recall from Theorem 4.1 that lim ~t - ~= exlats for 

all sample paths. The sequence (xt} and (pt} satisfies for each t 

(simultaneously, a.e.) the functional equation 

V(~ t) - r(x=,~ t) + 6fV(F(xt,yt,~t))P(dcl~)~t(d0). (5.1) 

Taking limits along any convergent subsequence gives 
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v (~ . )  - r ( ~ , p . )  + 8 f V ( r ( i , y , p ® ) ) p ( d c [ O ~ . ( d e )  

whsrs x i s  a l i m i t  p o i n t  o£ the | x t )  sequence.  ( In  t ak ing  the  l i m i t s  one uses  

the fact that V is bounded and the integral in (5.1) is E[V(~t)]Ft.l] to apply 

Chung (1974, Theorem 9 . 4 . 8 ) . )  However, from convergence of  b e l i e f s  (x ,y)  y i e l d s  

no in fo rma t ion  so P ( x , y , p . )  - p~, and (5.1)  becomes V ( ~ )  - r ( x , p ~ )  + ~V(p.) .  

Now we show t h a t  x solves the problem 

max r(x,~®) (5.2) 
x~X 

Suppose on the contrary that there is an AcX such that r(xA,p ) > r(x,~ ). Then 

by the functional equation 

v(~®) >_ r(xA,~®) + 61v(r(xA,~,~))p(dcle)..(ae). (5.3) 

But by Blacl<well's Theorem (see e.g., Kihlstrom (1984, Lemma l, p. 18)), since the 

.^ A.. experiment "observe ~x,y~ is trivially sufficient for the experiment "make no 

observations," we obtain, 

/V(P(x,y,p..))p(dc{~)~(dg) >. V(~ ) (5.4) 

Hence, from (5.3)  and (5 .4)  V(~ ) > r ( x , #  ) + 6V(~ ) ,  which i s  a c o n t r a d i c t i o n .  

So x s o l v e s  problem (5 .2 ) ;  t h a t  i s ,  x maximizes the  one -pe r iod  reward r ( x , p )  

for l i m i t  b e l i e f s ,  p . Since r ( . , p = )  i s  s t r i c t l y  concave in  x,  x "must be 

unique. 

6. ConcIusion 

We have c o n s i d e r e d  the  d e c i s i o n  problem f a c i n  8 an agent  c o n t r o l l i n g  a n o n l i n e a r  

r eg re s s ion  p r o c e s s  when parameters  in  the mean f u n c t i o n  and in  the  e r r o r  d i s t r i b u -  

~ion are  unknovn. The agent  f aces  a t r a d s o f f  between accumulat ing in fo rma t ion  by 

varying the  v a l u e s  o f  the  r e g r e s s o r s  and accmnulat ing o n e - p e r i o d  reward bY fo l lowing  

the one -pe r iod  expec ted  reward maximizing p o l i c y .  We show t h a t  the  problem can be 

brought i n t o  the  dynamic programming framework and t h a t  the  va lue  gunc t ion  s a t i s f i e s  

~he usual  f u n c t i o n a l  equa t ion .  The sequence o f  b e l i e f s  about the  unknown parameters  

is  shown to  converge a lmost  s u r e l y .  F u r t h e r ,  the  opt imal  a c t i o n  p r o c e s s  converges  

to the o n e - p e r i o d  opt imal  a c t i o n  under l i m i t  b e l i e f s .  
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