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I propose a technique, counting ‘equations’ and ‘unknowns’, for determining when the posterior 
distributions of the parameters of a linear regression process converge to their true values. This 
is applied to examples and to the infinite-horizon optimal control of this linear regression 
process with learning, and in particular to the problem of a monopolist seeking to maximize 
profits with unknown demand curve. Such a monopolist has a tradeoff between choosing an 
action to maximize the current-period reward and to maximize the information value of that 
action. I use the above technique to determine the monopolist’s limiting behavior and to 
determine whether in the limit it learns the true parameter values of the demand curve. 

1. Introduction 

Consider the problem of estimating the parameter vector 0 = 

Ia, P,, . . ., Pkl in the regression equation yt = (Y + P,xr, + PZxZt 
+ . * . +tp,x,, + E,, where x,~ is the value the ith regressor takes at date t 
and {Ed] is an unobserved shock process. 

Suppose an observer of this process starts with a prior, pO, over the 
parameter 0 = {a, p,, . . . , Pkl, obtains sequentially the samples 

{Y,, x1t> X2r,. . . , xkt) for t 2 1, and updates the prior using Bayes’ rule. The 
observer of this process may be an econometrician seeking to estimate the 
values of the parameter vector 0. Alternatively, the observer may be an 
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agent in an economy (a monopolist say), in which case some of the regressors 
may be actions of the agent that must be chosen as a function of the 
posterior distribution at the beginning of the period to maximize some 
objective function over some time horizon. 

When the observer of the regression process is an agent in the economy 
that also wants to control the regression process, then there is a tradeoff 
between maximizing current-period rewards and the future information value 
of any action. This problem has been studied by Prescott (1972) and 
Grossman et al. (1977) among the earlier papers in the economics literature 
and more recently by Kihlstrom et al. (1984), Mctennan (1984,1986), Aghion 
et al. (1986), Easley and Kiefer (19881, and Kiefer and Nyarko (19891. 

An important question in these models is whether in the limit there will be 
complete learning of the true parameter vector 0 = (cy, pi,. . . , Pkj of the 
regression process. One of the first papers to study this (afbeit in a slightly 
different context) is Rothschild (19741, who showed that an agent solving an 
infinite-horizon control problem may optimally decide not to take actions 
that will lead to complete learning of the true parameter vector. In the 
context of the linear regressions model, examples of incomplete learning 
have been obtained in the papers mentioned earlier. The question of learning 
is also related to work on the convergence to rational expectations equilibria 
[see, e.g., Blume and Easley (1984) and Feldman (198711. 

This paper focuses primarily on studying when the observer of the linear 
regression process will over time learn the true parameter vector. Our 
contribution is two-fold. First, we provide a simple technique for determining 
when there will be complete learning of the true parameter vector by 
counting the number of ‘equations’ and ‘unknowns’. We also study the 
infinite-horizon optimal control of the linear regression process and relate 
the question of complete learning to the properties of the one-period 
(myopic) problem. 

By the number of unknowns we mean the number of parameters to be 
estimated, (k + 1) in our case (i.e., the parameters ty, /3,, . . . , Pk). Let X, be 
the vector (x,~, . . . , xkt). Let X’ be any finite limit point of the vector X, 
[e.g., when X, is a scalar (k = I), then if X, converges it will have only one 
limit point, while if .X, does not converge it will have at least two limit points, 
the liminf and the Iimsup). Given any finite limit point x’, we show that the 
observer of the regression process will learn the value of (Y +/3,x\ 
i- . 1 f +pk,& (= y’, say) where x’ = (x;, . . . , ~$1; i.e., the observer of the 
process learns one ‘equation’ that the true parameter vector will satisfy. 
Hence if the X, process has (k + 1) finite limit points .X1,. . . , Xk+‘, such 
that the corresponding vectors (1, X1), . . . , (1, Xk+‘) [where (1, Xi) = 
(1,x( ,..., xi)~R~~i for each j= l,..., k + 11 are linearly independent, 
then the agent will learn k + 1 linearly independent equations that the k + 1 
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unknowns satisfy. The agent therefore will learn over time the true parame- 
ter vector. 

In section 4, we study the problem of the optimal control of a linear 
regression process. Here one of the regressors is a control variable of an 
economic agent. The control variable will in general depend upon all past 
observations and so will not be an independent process. We therefore cannot 
apply classical techniques to study the convergence to the true parameter. 
We use instead the method of counting equations and unknowns. The results 
of this section may be summarized as follows: Consider an agent acting 
myopically; that is, given the posterior distribution at any date, this agent 
chooses at that date an action to maximize the one-period reward. This 
generates a sequence of values of the vector of regressors X, = (x,[, . . . , xkr) 
some of which are the control variables. Suppose that this necessarily results 
in X, having at least k + 1 limit points X’, . . . , Xk+’ such that the corre- 
sponding vectors (1, X1>, . . ,(l, Xkt’) are linearly independent. Then the 
myopic agent learns the true parameter vector; but this then implies that the 
agent that is acting optimally (taking the future into account) will necessarily 
learn the true parameter values. 

The usefulness of this result of course lies in the fact that for most models 
the one-period (myopic) problem can be solved and the number of limit 
points of the regressors can very easily be determined. In section 4 we relate 
this to whether the agent observes an exogenous process before or after 
choosing an action for the period and whether the one-period optimal action 
is linear in the observation of the exogenous process. We then illustrate this 
using the example of a monopolist with unknown demand curve maximizing a 
discounted sum of profits over an infinite horizon. 

This result is in some sense the best that can be obtained with the level of 
generality considered in this paper. For in Kiefer and Nyarko (1989) it has 
been shown that for sufficiently low discount factors (i.e., if the future is 
sufficiently unimportant) a risk-averse agent solving an infinite-horizon prob- 
lem may actually choose the same actions as an agent acting myopically. 

We end the paper in section 5 with some concluding remarks. Most proofs 
are relegated to the appendix. 

Relationship to existing literature 

The question of learning has also been studied in ‘non-Bayesian’ contexts 
by Frydman (19821, Bray and Savin (19861, and Marcet and Sargent (1989) 
among others. The models studied in those papers differ from that in this 
paper in two essential ways: first, the forecasts of the unknown parameter are 
made by using least squares point estimators; and second, the unknown 
parameters are not fixed over time (as in this paper) but may vary as a 



690 Y. Nyarko, Counting equations and unknowns 

function of the agents’ estimates of the parameter. The most general results 
in that literature are in Marcet and Sargent (1989) which proves the conver- 
gence of the least squares estimates to the rational expectations values under 
assumptions which require some key matrices in their linear data-generating 
process to have eigenvalues less than one in absolute value and which also 
require the agent to ignore data which sends the least-squares estimates 
outside some specified compact set. Using least squares estimates of course 
means agents are using a biased and incorrect statistical model whenever the 
economy is not in a rational expectations equilibrium. 

This paper on the other hand studies a model where the unknown 
parameter is fixed over time but where the agents use the correct statistical 
model in learning. Hence the statements and proofs use probabilistic argu- 
ments which do not require any strong assumptions. 

This paper borrows from Kiefer and Nyarko (1989). There a similar 
problem to that studied in section 4 below. There are two main types of 
results in that paper. The first is that whether learning occurs or not is a 
function of whether the single regressor in the model converges or not; and 
the second showed that under regularity conditions for all discount factors 
sufficiently small the agent may optimally choose at each date the myopic 
action, so may not learn the true parameter. The model studied there had 
only one regressor, and the proofs were direct proofs that stressed the 
particular structure of that model. In this paper, we emphasize the method of 
counting equations and unknowns. This allows us in the context of the 
optimal control problem of section 4 to extend greatly the types of models 
that can be analyzed to those which have more than one regressor and which 
also have other exogenous regressors (i.e., which are not choice variables of 
the agent.) Further, the technique of counting equations and unknowns may 
be of some use in large-sample Bayesian statistics, as illustrated in the 
examples of section 3. 

We stress that the results of this paper do not require any assumptions on 
the distributional form of the shock process or the prior distribution (e.g., 
normality assumptions), as is sometimes required in the econometrics or 
large-sample Bayesian statistics literature. In particular we do not require 
that the shock process or the prior be normally distributed or that the prior 
beIong to a conjugate famiIy. 

One method for obtaining convergence of Bayesian posterior process to 
the true parameter value is to obtain conditions under which some estimator 
[e.g., ordinary least squares (O.L.S.)] is consistent and then to use a result 
which says that if there exists a consistent estimator, then the Bayesian 
posterior process converges. However, the conditions required to check the 
consistency of the O.L.S. estimator are in many situations harder or less 
general than merely counting the number of ‘equations and unknowns’ along 
any given sample path (and we illustrate this at the end of section 2 beIow.) 
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The results of section 4 are related to Easley and Kiefer (1988) who study 
the general dynamic programming problem with learning and relate the 
limiting optimal actions to the one-period optimal actions. In contrast, in 
section 4 we study models with more structure and where learning is through 
a linear regression equation to obtain, via the method of counting equations 
and unknowns more precise conclusions for these cases. 

2. The number of equations and unknowns 

Suppose a regression equation is given by 

y, =a +tp,x,, +/+2r + ..* +PkXkr $-Et, (1) 

where xit in R’ is the value the ith regressor takes at date t and {et) is an 
unobserved independent sequence with known’ distribution which has zero 
mean and uniformly bounded second moments. In particular, &t is indepen- 
dent of {(F,, xi), . . ,(E,_~, x,_,), xtl while x, can depend upon 

KE,,Xi) ,..., C&,-i, x, _ 1 1). Let pO be the prior probability over the parameter 
vector 0 = {a,/3 ,,..., pk} in Rk+’ representing initial beliefs about 0; we 
assume that pLo has finite first moment. 

Let (a, F, P) be the probability space on which we define the random 
variables {xit,e,, y,} for i = 1,. . . , k and t 2 1. Denote by pr the posterior 
distribution at the end of date t, that is, after observing the samples 

(Y,, x 17,. . ., x,JS1. We can show that with probability one, the posterior 
distribution, pI, converges to some limiting distribution, pm. In particular, we 
show: 

Lemma 2.1. On almost every sample path, the posterior process, (~~1, con- 
verges in the weak topology of measures to a probability measure, pm. 

(All proofs are in the appendix.) 

It must be stressed that the limiting value of the posterior process, pm, will 
depend on the sample path. Thus pcL, should be regarded as a random 
function: a mapping from 0, the set of sample paths, to the set of probability 
distributions for 0. 

Lemma 2.1 indicates that the posterior process converges, and therefore 
settles down somewhere. The lemma however does not tell us where the 
process converges to. In particular the lemma does not say that the posterior 

‘We may relax the assumption that the error term has known distribution and assume only 
that the likelihood function used in updating assigns full mass to B( having zero mean. This is 
because the proof of the main theorem uses the strong law of large numbers. However, if the 
distribution of E is unknown, then care must be taken in defining the correct probability space 
and attention must be paid to what happens on probability zero sets. 
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process converges to the probability measure concentrated on the true 
parameter value, 0. We proceed to describe a method by which one can 
characterize the limiting posterior distribution, pm, by counting the ‘number 
of equations’ and the ‘number of unknowns’, where the number of unknowns 
is k + 1 (i.e., the parameters (Y, pi,. . . , Pk) and the number of equations is 
the number of linearly independent limit points of the vector (1, X,) = 

(1 7 x,1,. *. 7 X*/J 

Fix any sample path and consider the sequence IX,}=, where X, = 

(x ,t, . . . , xkt); for that fixed sample path the sequence {X,1:=, is a sequence 
of vectors in Rk. If there exists a sub-sequence of dates {t,)~=, such that as 
n + 03 the limit of the vector XI, = (xu , . . . , xkr ) exists and equals some 

X’ = cx;, . . . ) x;>, then we say the sequence {X,1::, has X’ as a limit point. 
We show in Theorem 2.2 below that if the sequence has X’ as a limit point 
along the fixed sample path, there will exist a number y’ known to the agent 
in the limit (along the same fixed sample path), such that the agent will learn 
that the true parameter vector 0 = ((u, pi,. . . , Pk) satisfies the relation y’ = 
(Y + p,x; + . . . +Pkxb. This results in the agent learning one ‘equation’ 
that the true parameter satisfies. 

Before we state Theorem 2.2, we require some notation. Recall that pa 
denotes the prior distribution over the true parameter 0 = ((u, pi,. . . , Pk). 
The parameter 0 may be considered a random variable chosen at ‘date 0’ 
according to the distribution pO. 

Let F, denote the a-field generated by the random variables {y,)J:: and 

lx i7,. . . , x,J=~. Note that for each t, X, = (xlr,. . . , xkr) is F,-measurable 
but yt is not. The a-algebra F, represents the information available to the 
observer of the regression process (1) at date t, just before the random 
variable y, is observed. Finally let F, = V z+F,,, the u-algebra induced by 
the union of the F,‘s, U z=, F,; F, represents the information available to the 
agent in the limit. 

We now state Theorem 2.2. 

Theorem 2.2. There exists a set A of sample paths with P(A) = 1 with the 
following property: For each f;ced sample path in A, if there exists a sub- 
sequence of dates {t,,]y= 1 such that as n + ~0 the limit of the vector Xt, = 

(Xl&, . . . > Xkf,) exists and equals X’ = (xi,. . . , XL>, then there exists an F,- 
random variable2 y’ such that the limiting posterior distribution, ucL,, has 
support on the set 

M= {(o’,p;,...,p;): y’=cu’+p;x; + ... +&XL}. 

Further the true parameter vector 0 = (a, /3,, . . . , Pk) lies in M. 

‘For technical reasons we require that the limit point, X’ = Cd,, , XL), can be chosen to be a 
measurable function of the sample path. 
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Fix any sample path and consider the sequence IX,]=, where X, = 

(x ,t, . . . , xkr); these are vectors in Rk. Such a sequence of vectors can have 
any number of limit points (and we stress that this is along the same given 
fixed sample path). 

Suppose that for the fixed sample path the sequence of vectors IX,]“=, has 
k + 1 limit points X”‘, . . , XCk+r), where for each j = 1,. . . , k + 1, X”’ = 
<xi,. . .) x&l. Then the agent, along that fixed sample path, will learn that the 
true parameter will satisfy k + 1 equations, y’ = (Y + p,x{ + . . . +tp,xi, say, 
where j varies from 1 to k + 1. However there are k + 1 ‘unknowns’, 
(Y, p,, . . . , Pk. Hence if the k + 1 equations that the agent learns are linearly 
independent, then there will only be one value of the parameter vector 
@=(a,P ,,..., pk) that can satisfy all k + 1 equations simultaneously. Since 
the true parameter value satisfies this relation, the agent will learn the true 
parameter in the limit. 

(We emphasize that all of the above computations are being done along 
one given sample path. The agent is not expected to be able to make 
observations across different sample paths. However, since along a g&en 
sample path there may exist many limit points the agent may learn many 
‘equations’ along the given sample path.) 

The conditions for the convergence of the posterior process to the true 
value found in the econometrics and large-sample Bayesian statistics litera- 
ture usually involve joint restrictions on both the distributional form of the 
priors and errors (e.g., normality). The method of counting equations and 
unknowns does not require such conditions. 

One technique used in the literature in obtaining convergence of posterior 
distributions is to impose conditions under which the ordinary least squares 
(0.L.S.) estimator is consistent, and then to argue that if there exists a 
consistent estimator, then the Bayesian posterior process converges. 

For example, if X, denotes the matrix of regressors at date n, then an 
assumption typically imposed for strong consistency of the O.L.S. estimators 
is that XAX,,/n converges to a finite positive definite matrix as n -+ CC [see, 
e.g., White (1984, theorem 2.1211. There are many cases where this condition 
does not hold and yet one can still apply the number of equations and 
unknowns technique (and we illustrate one such case in a footnote).3 This 
condition may of course be weakened [see, e.g., Anderson and Taylor (197911, 
but then the other conditions required for the case with multiple regressors 

‘Consider a linear regression model y = n + px + E with one regressor which takes the value 
x, = 1 at any date n = 2k for any integer k, and x, = 0 for all other dates. In this case Theorem 
2.2 implies that on each sample path the posterior distribution converges to the true parameter 
vector (a, 0). However, E:= ,x:/n converges to zero. 

To see this, define for each integer n, m(n) to be the unique integer such that 2m(n)-1 <n 5 

2m(n). Then c:_ ,x,‘/n = cy_ ,x,/n I Ef_“(,“)x,/2 m(n)-’ = 2C;5”$2m(n) = 2m(n)/2”‘“’ + 0 

as n + m. 
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are not always easy to directly verify and usually are much stronger than 
conditions required to apply the number of equations and unknowns tech- 
nique. 

Most important of all, of course, is the fact that the method of counting 
equations and unknowns yields results that hold on a given sample path; for 
example in the linear regression model with one regressor we conclude from 
Theorem 2.2 that the Bayesian posterior distribution converges on any given 
sample path that has at least two limit points. 

3. Examples 

We now provide a number of examples that show how Theorem 2.2 and 
the technique of counting the equations and unknowns may be used. Exam- 
ple 1 has i.i.d. regressors, while example 2 has a lagged dependent variable. 
We show that in both cases there is sufficient variability in the regressors (in 
particular, there are enough ‘equations’) and therefore there is complete 
learning of the true parameter vector. We stress that we place no assump- 
tions on the particular distributional form of the prior distribution or the 
distribution of the shocks, {E,}; in particular we do not use the normal 
distribution or conjugate priors. 

We later provide some counter-examples to show what may cause there to 
be incomplete learning in the long run (i.e., pL, not concentrated on the true 
parameter vector). These are taken from the economics literature and involve 
cases where there is insufficient movement in the regressors (i.e., not enough 
‘equations’). 

Example 1 (the i.i.d. case). Suppose the following two conditions hold: 

(i) The vector of regressors, X, = (x,,, . . . , xk,), is serially independent and 

identically distributed. 

(ii) For each t (recall that X, is identically distributed) the random vector 

(LX,) = (1, Xl,, x2,, . . . , xk,) has at least k + 1 linearly independent points 
in its support. 

Condition (ii) holds if, for example, the random variable xi, is independent 
of xjt for all i different from j and, in addition, for each i, xit has at least 
two points in its support (i.e., xzI is not degenerate); in particular this will 
hold if k = 1 so that yt = (Y + px, + B, and x, has at least two points in its 
support. Condition (ii) also holds if X, has Rk as its support (e.g., if X, is 
multivariate normal). Condition (ii) fails when, for example, xir = xjt for 
some i different from j; in this case there may be no way of learning pi and 
pj even though the sum, (pi + pj), may be learnt. 
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Under the two conditions above we can show: 

Proposition 3.1. Under (i) and (ii) above, outside of a null set there will be 

complete learning of the true parameter. [I.e., on almost every sample path the 
limiting posterior distribution, pm, is concentrated on the true parameter vector, 

0 = (cr,B*, . . . , &>.I 

The idea behind the proof of Proposition 3.1 is as follows: First, the 
assumption that X, is serially independent and independent distributed 
implies, loosely speaking, that on each sample path the X, process has as 
many limit points as there are points in the support of that process. In 
particular, 

Lemma 3.2. Let (X,} be a serially independent and identically distributed 

process taking values in Rk. Let B be any Bore1 subset of Rk such that 
P(X, E B) > 0. Then P(X, E B infinitely often) = 1, and therefore outside of a 
null set X, has a limit point in B. 

Proof. Since the {X,1 process is identically distributed, 

cP(X,tB)= gP(X,tB)=m. 
f=l t=1 

(2) 

The lemma then follows immediately from an application of the 
Borel-Cantelli lemma [see for example Chung (1974, p. 7611. n 

To complete the proof of Proposition 3.1 one uses conditions (i> and (ii> 
and Lemma 3.2 to show that on almost every sample path the X, process will 
have at least (k + 1) limit points, X’, X2,. . . , Xk+‘, say, [where for each j, 
x’ = (xi,. . . ) xi> is a vector in Rk] such that the corresponding k + 1 vectors 

((1, Xl),. ..,(l, Xk+‘N are linearly independent. One then uses Theorem 2.2 
to conclude that the agent will learn k + 1 linearly independent equations 
that the true parameter must satisfy, and hence will necessarily learn the true 
parameter vector. 

Example 2 (lagged dependent variable). We now discuss the case where the 
regression equation is given by 

Y,=a+pYt-,+Et, (3) 
where we assume that y,, is a known and fixed, but otherwise arbitrary 
number. 

We assume that the (~~1 process has mean zero and is not degenerate (i.e., 
is not concentrated on the point IO}). This is sufficient to induce enough 
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variability in the yt process so that on each sample path the Iy,_,l process 
has at least two finite limit points, y’ and y”, say. Using Theorem 2.2, we may 
conclude that there will exist some random variables, 9’ and j”, known to the 
agent in the limit, such that the agent will learn that the true parameter 
vector (a, /3) Iies in both of the sets 

M’= {(a’&): j’=a’+p’y’}, (4) 

M” = {(a’, p’) : 9” = a’ + /-yy”} . (5) 

Since there is only one value of (Y and p that can lie in M’ and M” 
simultaneously, the agent necessarily learns the true value of the parameters, 
(Y and p. For technical reasons we also require that the parameter /3 be of 
absolute value strictly less than unity, i.e., lpl < 1. Thus we can show: 

Proposition 3.3. Suppose that the regression process is given by (3) above with 
Ip I < 1. Then on almost every sample path the limiting posterior probability, poo, 
will be concentrated on the true parameter vector, (a, p>. 

Counter-examples. The examples in the economics literature (mentioned in 
the introduction) showing that there may be incomplete learning of the true 
parameter vector all involve situations where there is insufficient variability in 
the regressors. For example, the model of Rothschild (1974) involves essen- 
tially the situation where an agent has to choose one of two arms of a bandit, 
both with unknown distribution of returns, so as to maximize an expected 
sum of discounted returns. Rothschild (1974) shows that it is possible that an 
agent after some finite sequence of draws will incorrectly predict that one of 
the arms is the ‘good’ arm and play this arm for all but infinitely many 
periods. Without variability in the use of the arms it is impossible to learn the 
true distribution of both arms. 

4. An infinite-horizon optimal control model 

The purpose of this section is to study what happens to the results of 
section 3, when instead of assuming the stochastic properties of the regres- 
sors we suppose that some of the regressors are obtained via an infinite- 
horizon optimization problem. 

The second purpose of this section is to discuss to what extent the results 
obtained in Kiefer and Nyarko (1989) for the simple regression model (which 
showed that for all sufficiently small discount factors incomplete learning may 
be optimal) may be extended to the model where there are many regressors. 
By the simple regression model we mean the case where there is only one 
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regressor as below (where x, is the agent’s control variable): 

y,=a+px,+& f’ 

We now extend the model by introducing an exogenous regressor {z,} that 
we shall assume is serially independent and identically distributed. The 
regression equation then becomes 

y, = a + px, + 42, + Et. (7) 

We consider two cases which will depend upon whether the agent chooses an 
action at any date before (model A) or after (model B) the agent observes the 
value of the exogenous process for that date. 

A priori it is difficult to say whether there will be more or less learning in 
these extended models. On the one hand, in the extended models there will 
be more parameters to learn (three parameters instead of two). However, 
recall that in the simple regression case the reason why there may be 
incomplete learning of the true parameter is because there is insufficient 
variability in the regressors. The extended models introduce some variability; 
the question is whether this added variability will be enough to estimate the 
larger number of parameters of the model. 

In the long run, we know from Lemma 2.1 that the posterior process 
converges, and therefore settles down. In model A, where the agent chooses 
the action before observing the value of the {z,} process for the period, there 
will be no reason to expect the agent to move the optimal action sequence 
around if the posterior process is settling down. Hence, in the limit we expect 
the X, process to settle down. In this situation it is not surprising that the 
agent may not learn the true parameter vector (especially the coefficient, p, 
of x in the regression equation). Proposition 4.2 discusses further the 
question of learning in model A. 

In model B where the agent chooses a date t action, x,, after the agent 
has observed the realization of zI, since the posterior process is settling 
down, the optimal action X, will depend very much on the observed value of 
z,. The variations in the z, process over time (recall z, is i.i.d.) will therefore 
result in variations in the X, process. The question of the complete learning 
of the true parameter vector will then depend upon whether in the limit the 
X, process varies linearly or nonlinearly with the z, process. For example if in 
the limit X, is approximately equal to z,, then the agent may learn C/3 + $), 
but will not learn either p or 4. 

In section 4.2, we identify the limits of the X, process as the solution of the 
one-period problem with prior distribution equal to the limiting beliefs. The 
question of whether in the limit X, moves linearly with z, then depends upon 
whether or not the one-period optimal actions are linear or nonlinear in z 
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for fixed prior. Thus in model B there will be complete learning of the true 
parameter if the one-period probiem results in optimal actions that are 
nonlinear functions of z; otherwise one is not guaranteed the complete 
learning of the true parameter. This is made precise in Propositions 4.3 
and 4.4. 

Therefore the question of complete learning depends upon whether the 
agent chooses an action before (model A) or after (model B) the agent 
observes the exogenous process. Complete learning is more likely in the 
latter case (model B), but even in this case further conditions are required. 
However these conditions take the form of checking for the nonlinearity of 
the solution to the one-period problem in z. Since in general the one-period 
problem can be solved quite easily, this condition can usually be verified. In 
section 4.4 we consider as an example the problem of a monopolist seeking to 
maximize an expected discounted sum of profits with unknown demand 
curves, and discuss the conditions under which we are assured that the 
monopolist will learn all the parameters of the demand curve in the limit. 

The rest of this section is organized as follows. We first formally describe 
the infinite-horizon optimization problem facing the agent. We provide only a 
sketch here; one should consult Kiefer and Nyarko (1989) for details (espe- 
cially for the measure-theoretic flourishes!). In section 4.2 we indicate that 
the limit points of the optimal action process solve certain one-period 
problems, and in section 4.3 we discuss the question of complete learning of 
the true parameter vector. We end in section 4.4 with an example of a 
monopolist maximizing an expected discounted sum of profits with unknown 
demand curve. 

4.1. Model 

Denote by p(ds) the common marginal probability distribution of Ed. On 
(0, F, P) is also defined the exogenous process (z,}, that the agent observes 
but over which the agent has no control. We assume that (z,} is independent 
and identically distributed, with common marginal probability distribution, 

q(dz). 
Let x be the action space, assumed to be a compact subset of R’. The 

parameter space is given by H = R 3. If the true parameter value is 0 = 
(cu, p, 4) and the agent chooses the action X, in x at date t, then the agent 
wiII observe the outcome yt given by yl = (Y + /?xt + 4z, + F~. 

Let P(H) be the set of probability distributions on H and let pa E P(H) 
be the prior distribution of the true parameter 0 = (a, /3,4> E H. If pCLt_ 1 is 
the prior distribution at the beginning of date t, and the agent chooses an 
action xt and observes z, and yt, then the agent updates the prior using 
Bayes’ rule to obtain the posterior distribution, pUt = T(x,, z,, y,, pt_ ,). Un- 
der standard conditions the updating rule r is well-defined and continuous 
and we assume this throughout. 
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Let U: XX R’ X R’ be the utility function; in particular, if the agent 
chooses action x, and observes z, and y,, then the utility the agent derives is 
u(x,, zl, y,). We assume that u is bounded and continuous in its arguments. 

The partial history at dates IZ, h,, is the vector of past values of the 

(x,, z,, Y,) process; i.e., h, = ((x,, zl, yr>, . . . ,(x,_,, z,_~, Y,_~)). 

We consider two different models, models A and B depending upon 
whether the agent chooses the date r action, x,, before or after observing the 
realization of 2,. 

Model A. Here the agent chooses date t action x, before observing the 
value of z,. A policy for model A is a sequence of functions r* = {~,*}~=,, 
where for each t 2 1, the policy function r,* specifies the date t action, 
x, = am*, as a Bore1 function of the partial history h, = 

((X*,Z1,Y,),...,(Xr~,, z,_,, y,_,)). Note that the action x, = rF(ht) is not a 
function of z,. The reward function for model A, r, is then defined by 

‘-(xt,~u,-,) =/4x,, z,, Yt)p(de,)q(dz,)~.,-,(dO), (8a) 

where y, = (Y + @x, + 42, + Ed and @ = (a, P, 4). 

Model B. Here the agent chooses the date t action x, after observing the 
value of z,. A policy of model B is a sequence of functions rB = {r,“}= r, 
where for each t 2 1, the policy function r,B specifies the date t action, 

x, = z-,~(Iz,, z,), as a Bore1 function of the partial history h, = 

((X,,Zr,Y,),..., (xt _ ,, z,_ ,, yl_ ,>> and the observation of z,. The reward 
function for model B, r, is then a function of z, and is defined by 

~(X,,Z,,~~-~) = / ~(xt,zt,yt)~,(d~r)l~t-,(dO), (8b) 

where yt = (Y + pxr + 42, + &t and 0 = ((.u, P, 4). 

We assume that in both model A and model B the reward function is 
strictly concave4 in x. 

Let 6 in (0,l) be the discount factor. Any policy rr will generate a sum of 
expected returns equal to 

(9a> 

41t will become clear later on that we require this strict concavity assumption only for prior 
distributions that could be limiting distributions. Hence, we may ignore the case of the prior p 
being concentrated on p = 0, in which case the strict concavity of the reward function r may not 
hold. Further we note that outside of the case where the prior has point mass on p = 0, the strict 
concavity of r in x is implied by (but does not imply) the strict concavity of the utility function in 
its arguments x and y. 
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for model A, and 

for model B, where the x, and pUt are those induced by the policy rr. A policy 
r* is said to be an optimal policy if for all policies r and all priors pO in 

P(H), 

for model A, and 

V,~P~~ 2,) 2 V,(P~, 2,) for each zl, ( lObI 

for model B. Even though the optimal policy r* (when it exists) may not be 
unique, the value function V&J = V,.(pO) is always well-defined. The 
following follows from standard dynamic programming arguments: 

Theorem 4.1. For both models A and B: An optimal policy rr* exists; the 
value function V is continuous in its arguments; and if (x, , pLI _ ,} is the sequence 
of actions and posterior distributions induced by the optimal policy, r*, then for 
each t, x, solves the functional equation below, for models A and B respec- 
tively , 

WI 

and 

V(P,-,J,) = max r(x,ZrYut-l) 
x in X 

+ 6 ~(~r,2,+,)P(da,)~t-,(d~)4(dtr+l), / (lib) 

where u1 =l?x,z,, Y,,P,_,), yt =a +Px + 42, +s,, and @=(a,P,$). 

4.2. The convergence of the optimal action process 

We now characterize the limit points of the optimal action sequence, {x,1. 
First we study model A. Let ho(u) be the optimal action for the static 
(one-period) problem when the prior distribution is ,u; i.e., suppose that 
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ho(p) solves the problem 

max r(x,u). 
x in X 

( 12a) 

By assumption T(x,~) is strictly concave in x, hence /Z’(F) is uniquely 
defined. Now consider a fixed sample path, and recall from Lemma 2.1 that 
the posterior process, pL,, converges to some limiting distribution, pL,. In the 
lemma below we show that if x’ is any limit point for the optimal action 
sequence Ix,}, then x’ = h’(&. Since ho is uniquely defined, {x,) can have 
only one limit point, and hence x, must converge [to ho&J]. [Similar results 
have been obtained in Kiefer and Easley (1988) and Kiefer and Nyarko 
(19891.1 

Lemma 4.la. On almost every sample path, the optimal action process, x,, 
converges to some limit x’ which satisfies x’ = h’(u.J, where uL3a is the limiting 
posterior distribution and ho is the optimal policy function for the_ static 
(one-period) problem. 

We now move to model B. Note that in model B the agent observes z, 
before taking the action x,. The static (one-period) problem will therefore 
depend on the prior, p, and the observation of the {z,) process at the 
beginning of the period. Denote by ho&, z) the optimal action in the static 
problem; i.e., the solution to the problem 

max r(x,z,u). 
x in X 

( 12b) 

Again, since we assume that r(x, z, u) is strictly concave in x, ho&, z) is 
uniquely defined. 

We proceed to obtain the analogue of Lemma 4.la for model B. We know 
that the posterior process will converge (to &. Hence, in the limit the 
optimal action, x~, will depend very much on the value of z,. Below we show 
that to each limit point of z, will correspond a unique limit point of x,. 
Hence in contrast to model A, since we have shown in Lemma 3.1 that the 
(z,} process does not converge, x, will therefore not necessarily converge in 
model B. Further, we show in the lemma below that if we fix a sample path, 
and suppose that z’ is any limit point of {z,) and x’ is the corresponding limit 
point of x,, then x’ = h”(uL,, z’); i.e., x’ solves the static (one-period) prob- 
lem with prior CL, and the observation z’ of the exogenous ({z,}) process at 
the beginning of the period. 

Lemma 4.lb. There exists a set of sample paths, A, with P(A) = 1, with the 
following properties. Fix a sample path in A; if there is a sub-sequence t, such 

I.E.D.C.-D 
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that .z,~ converges to some 2’ as n + m, then lim, em x,~ =x’ exists and satisfies 

x’ = ho@,, z’), where pu, is the limiting posterior distribution and ho is the 
optimal policy function for the static (one-period) problem. 

4.3. The question of complete learning of the true parameter vector 

Lemmas 4.la and 4.lb characterized the limit points of the optimal action 
sequence. We now seek to determine what the limiting posterior distribution 
is, and, in particular whether it is concentrated on the true parameter vector. 

First we study model A. Recall that ho(p) is the solution to the one-period 
problem with prior p [see (12a) above]. Fix a sample path and let p_ be the 
limiting posterior distribution on that sample path. We know from Lemma 
4.la that the Ix,] process converges to x’ = h&J. Since the exogenous 
process, {zt}, is assumed i.i.d., if each z, has at least two points in its support 
(i.e., z, is not a constant), then from Lemma 3.2 above the (z,] process will 
have at least two limit points, z’ and z” (say>, on each sample path. Hence 
applying Theorem 2.2, there exists &-measurable random variables y’ and 
y” such that CL, has support on both of the sets 

M’ = {(a?, /3’, 4’) : y’ = (Y’ + p’x’ + 4’~‘) , 
(13) 

M”=((cQ’,@): y”=o’+~‘x’+@z”}. 

Further the true parameter value lies in both M’ and M”. However there is 
only one value of 4’ [equal to ( y’ - y”)/( z’ - z”)] that simultaneously can be 
in both M’ and M”. Also there is only one value of (a’ + 6’~‘) that can lie in 
both M’ and M”. Hence we have shown: 

Proposition 4.2. In model A, if the z, process is not degenerate (i.e., has at 
least two limit points in its support ), then the agent will learn the value of C$ and 
will also learn a linear relationship that CY and p will satisfy (i.e., there exists an 
F,-measurable random variable y “’ such that both the true parameter and the 
support of p, lie in the set M = {(a’, p’, 4’): y “’ = (Y’ + p’x’}). 

One may ask whether we can strengthen Proposition 4.2 to obtain the 
complete learning of (Y and /I. This does not seem too promising. Consider 
the situation where the true value of 4 is known. Then we may write the 
regression equation as m, = (Y + px, + er where m, = yr - C&Z,. This model is 
the same as the simple regression model, yt = (Y + px, + E,, for which from 
Kiefer and Nyarko (1989) we know that there may be incomplete learning of 
the parameters (Y and p. 

We now move on to model B. The convergence of the posterior process 
will depend upon whether the optimal policy function for the one-period 
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(static) problem, h”(p, z), is linear or nonlinear in z. Suppose first that ho is 
linear in z (for lixed p). In particular fix a sample path, let pm be the limiting 
posterior distribution on that path, and suppose that ho&, z) = c + dz, 
where c and d may be functions of p,,, but independent of z. Then in very 
much the same way that Proposition 4.1 above was proved we can show: 

Proposition 4.3. In model B, suppose that the z, process is not degenerate 
(i.e., has at least two points in its support). Then there exists a set of sample 
paths, A, where P(A) = 1 with the following property: For fied sample path in 
A if uCLm is the limiting posterior distribution and ho&,, z) = c + dz, then the 
agent will learn the values of (a + PC) and (pd + 4) [i.e., there exists F,-mea- 
surable random variables 9 and 9’ such that the true parameter vector and the 
support of um lie in the set M = {(a’, p’, 4’): 9 = CX’ + p’c and 9’ = P’d + c$}]. 

Again one may ask whether Proposition 4.3 may be strengthened to obtain 
the complete learning of the true parameter vector. Again this is not possible 
in general. Let p be the prior distribution and suppose that the one-period 
optimal action given observation, z, of the exogenous process is h”(u, z) = 
c + dz, and assume that to begin with the agent knows the values of ((Y + PC) 
and (pd + 4). From the example of Kiefer and Nyarko (1989) the agent may 
choose for the infinite horizon the action x = ho&, z), which is the one-period 
optimal action, if the discount factor is sufficiently low. However, the choice 
of such an action results in a regression equation y = ((Y + PC) + (pd + #J)Z 
+ e, which yields no new information to the agent. The agent will therefore 
not learn the true parameter vector. 

Next we study the situation in which the optimal policy function for the 
static (one-period) problem is nonlinear. We require the following nonlinear- 
ity restriction (which requires that for fixed p, ho has no linear portions): 

Nonlinearity Assumption. Fix a prior distribution u. Then there does not exist 
a z’ and z” (with z’ different from z”) and a number m in (0,l) such that 

h’(u,mz’+ (1 -m)z”) =mh’(u,z’) + (1 -m)h’(u,z”). (14) 

Under the above condition, if we assume that the support of the z, process 
contains at least three points, then we may very easily show that the agent 
will learn all the parameters, cx, p, and 4, of the regression equation. We 
proceed to prove such a result. 

Proposition 4.4. In model B, if the z, process has at least three points in its 
support and the optimal policy function ho satisfies the nonlinearity assumption 
above, then the agent will learn the true values of the parameters (Y, p, and 4 
(i.e., the limiting posterior distribution, pm, will be concentrated on the true 
parameter values of LX, p, and 4). 
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Propositions 4.2-4.4 give us information on the convergence of the poste- 
rior process in terms of the linearity or otherwise of the one-period optimal 
policy functions. The usefulness of these results is of course due to the fact 
that in most cases the one-period problems can be very easily solved and the 
linearity of the optimal policy functions determined. Below we illustrate the 
results above with an example of a monopolist with unknown demand curve. 

4.4. Example: Monopolist with unknown demand curue 

Suppose that at each date a monopolist has to set a price pt of a single 
good that the monopolist sells. Given the chosen price, pt, the quantity of the 
good, q,, that the public purchases is given by the demand curve 

where z, is an i.i.d. exogenous process and &t is an i.i.d. noise term with 
mean zero and bounded variance that the monopolist does not observe. The 
parameters (Y, p, and 4 are unknown to the monopolist and p is the 
monopolist’s prior over these parameters. The cost of producing output q is 
C(q), so the monopolist’s profit at date t is rrr =ptql - C(q,). The objective 
of the monopolist is to maximize the expected sum of discounted utilities of 
profit, EC~=~~‘-‘U(~T~). We seek to discuss the question of whether the 
monopolist will over time learn the parameters of the demand curve. 

First, from section 4.3 above we know that if the monopolist has to 
announce date t prices before observing z, (this is model A), then it is 
possible that the monopolist will not learn the true parameter vector. If 
alternatively the monopolist observes z, before choosing the price P,, then 
complete learning of the true parameter vector depends upon the linearity of 
the optimal one-period price p = ho&, z), as a function of the observation of 
z, with incomplete learning if this function is linear and complete learning if 
the function is nonlinear [i.e., satisfies the nonlinearity condition (1411. We 
now determine the linearity of the one-period optimal policy function, with 
different specifications of the cost function and the utility function. All of 
these cases are for the situation where the monopolist observes the z, before 
choosing the price pI (i.e., model B). 

Case I: Risk-neutral monopolist with zero costs. The expected profits in this 
case will be given by 

ETA = E[ pt( 0 -t PP, + 4z, + %>I 

=p, Ea +p: EP +prz, EcP. (16) 
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Assuming that E/3 < 0, the above function of pI will be maximized at 
p, = -(Ea + z, E4)/2EP. The optimal policy function for the one-period 
problem is then given by 

ho@, 2) = -(E, ff +2 E,4)/2E,P. (17) 

This is a linear function z, for fixed prior CL. In this case Proposition 4.3 holds 
and we are not guaranteed that the agent learns the true parameter vector.5 

Case II: Risk-neutral monopolist with nonlinear cost function C(q). If C(q) is 
sufficiently nonlinear, then it is clear that the optimal policy function for the 
one-period problem will also be nonlinear and indeed satisfy the nonlinearity 
assumption required in the proof of Proposition 4.4. In that case, from 
Proposition 4.4, there will be complete learning of the true parameter. We 
note however that the quadratic cost function will not work; it results in a 
linear optimal policy function for the one-period problem. However, practi- 
cally any other strictly convex cost function will result in a nonlinear optimal 
policy function for the static problem, and therefore complete learning of all 
the parameters of the demand curve. 

Case ZZZ: Risk-averse monopolist. Alternatively suppose that the monopolist 
is risk-averse and seeks to maximize the expected utility of profits, E&r), 
where u is a strictly concave function. Then, in general, the optimal policy 
function for the one-period will be nonlinear and, in particular, satisfy the 
nonlinearity condition. We may therefore apply Proposition 4.4 to conclude 
that a monopolist solving an infinite-horizon problem in this case will over 
time learn the values of all the parameters of the demand curve. 

5. Conclusion 

In this paper we have provided a technique, counting the number of 
‘equations’ and ‘unknowns’, that is useful in determining when the Bayesian 
posterior process of a linear regression model will converge to point mass on 
the true parameter values. This technique is illustrated with two 
examples - i.i.d. regressors and lagged dependent regressors. We then study 
the optimal control of a linear regression process. We indicate that the 
question of complete learning is answered by looking at processes resulting 
from the use of myopic or one-period optimal policies and then counting the 
number of ‘equations’ and ‘unknowns’. We show that complete learning of all 

5However, Proposition 4.3 tells us that the monopolist will learn the values of (a - jS(Ea/EP)) 
and (1 -P(E+/EP)) where the expectations are those with respect to the limiting posterior 
distribution, pL,, which obviously will be known to the agent in the limit. 
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the parameters of the regression process is likely when there is an exogenous 
process (say GNP) that agents observe before taking their actions. The 
results are illustrated with the example of a monopolist seeking to maximize 
an expected sum of discounted profits with an unknown demand curve. 

Appendix 

Proof of Lemma 2.1. This follows almost immediately from observing that, 
for any set A, the sequence z, = P[ 0 E A IF,] is a martingale sequence with 
respect to F,, so one may apply the martingale convergence theorem. [See, 
e.g., Kiefer and Nyarko (1989, theorem 4.11.1 

Proof of Theorem 2.2. First we state the following lemma due to Taylor 
(1974). 

Lemma A.1. Let {v,} be a sequence of independent random variables with zero 
mean and uniformly bounded second moment. Let {z,} be a sequence of 
random variables such that for each t and t’, with t < t’, v,, is independent of 

Iz,, 2 2,. . . , z,}; then for almost every realization such that CT= ,z: + to, 

(18) 

Proof. One applies Taylor (1974, lemmas l-3) with minor modifications. 
n 

We use Lemma A.1 above to prove Lemma A.2 below which is key in 

proving the theorem. Let X, denote the vector (x1(, . . . , xkr). Given any two 
vectors a and b in Rk, we use notation a <b if ai < bi for each coordinate 
i=l , . . . , k. A vector a in Rk will be called a rational vector if for each 
coordinate i = 1,. . . , k, ai is a rational number. Let l+,= Kj be the indicator 
function on K, i.e., l,, E KI is 1 if (w E K} and is zero otherwise. We now 
state Lemma A.2. 

Lemma A.2. There exists a set A of sample paths with P(A) = 1 with the 
following property: For each fixed sample path in A and for any two fixed 
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rational uectors a and b, with a < b, if cy= ,I,, < x, <b) = w, then 

(19) 

Proof. Using Lemma A.l, it is immediate that for fixed vectors a < b, (19) 
holds on some set A(a, b) with P(A(a, b)) = 1. Define A to be the intersec- 
tion over all rational vectors a < b, then A satisfies all the conclusions of the 
lemma. n 

We now prove Theorem 2.2. Let {t,} and X’ = Cx’,, . . . , XL> be as in 
Theorem 2.2. Below we define y’, and hence the set M of the theorem, and 
show that on the set A of Lemma A.2, 0 = (a, pr, . . . , Pk) lies in M. This will 
conclude the proof of Theorem 2.2, for in that case 11, E Mj = 1 with probabil- 
ity one, hence 

,_L~(M) = E[11,,&,] = E[Il F,] = I a.e. (20) 

The true parameter vector satisfies the regression equation 

y, = a + p,Xlr + . . . +PkXkt + E,. (21) 

Let a and b be any two rational vectors in Rk such that a <X’ < b where 
X’=(xi,..., XL> (i.e., for each coordinate i, ai <xi < bi). If for expositional 
convenience we write 1, = l,, < x, < bj, then multiplying both sides of (21) by 
1,) summing over t and then dividing by cl,, one obtains 

where if S(T) = cT=,lt, jr= cT=,y,l,/S(T), Xlr= cT=,xi,l,/S(T) for each 
i, and Fr = cT=,.ztl,/S(T). From the definition of X’ as the limit of the 
vector X,,, for each i, aj <xi,,, < bi for all but at most finitely many n; hence 

CT= ,l,, < x, <b) = ~0, (19) holds and ET + 0. Taking the limit superior as 
T -+ 00 on both sides of (22), results in 

Choose a sequence of pairs of rational vectors, {am, bm}~=l, such that for 
each m, a”’ <X’ < b”, and as m + 00, a” +X’ and b” +X’. For fixed m, 
let Jr” and jZ,y be the same as Jr and ZiT defined above except that the 
vectors am and b” replace the vectors a and b. Then we obtain the 
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equivalent of (23) for each m: 

Next we take limits as m + m on both sides of (24) above. It is easy to show 
by a simple E - 6 argument that 

Hence defining y’ = lim, _m limsup, --rm y,“, we obtain 

y’=(Y+pix;+ ... l tP&. (26) 

With y’ defined, (26) implies that 0 = ((Y, p,, . . . , Pk) lies in M. This con- 
cludes6 the proof of Theorem 2.2. Q.E.D. 

Proof of Proposition 3.1. From condition (ii> the vector (1, X,1 = 

(1 , xlt, . . . , xk,) has at least k + 1 linearly independent vectors in its support. 
Let us denote these vectors by (1, b’),(l, b2>, . . . ,(l, bkt’l, where for each 
j=l , . . . , k + 1, b’ is a vector in Rk. If X, is discrete, then we may assume 
that P(X, = bj) > 0 for each j = 1,. . . , k + 1. Otherwise, let Bj be a neigh- 
borhood in Rk around bj. We choose these neighborhoods sufficiently small 
(i.e., sufficiently close to the bj’s) so that if {a’, . . . , uk+‘} is any collection of 
k + 1 vectors in Rk, and for each j ui lies in B’, then the k + 1 vectors 

((1, a’),. . . ,(l, ak+‘N are linearly independent. (It is easy to show that this is 
always possible.) Note that since b’ is in the support of X,, P(X, lies in 
B’) > 0. 

Fix any j = 1,. . . , k + 1. From Lemma 3.2 above, outside of a null set X, 
has a limit point in Bj; let us call this limit point X’ = <xi,. . . , xi). From 
Theorem 2.2 above the agent will learn the value of (Y + @ix! + . . . + pkxi. 
Since, by construction, the k + 1 vectors (1, X’), . . . ,(l, Xkt’) are linearly 
independent, the agent will necessarily learn the true parameter vector. 

Q.E.D. 

‘Note that we have overlooked the &measurability of y’. However, observe that y’ is a limit 
of variables that are each in F,. To complete the verification that y’ is F,-measurable we need to 
show that the rational vectors a, b and a”‘, b”, for each m, can be chosen as a function of the 
sample path in a measurable way. As we mentioned in a footnote to Theorem 2.2, we assume 
that the limit points xi are chosen measurably. If this is done, then one can apply the same 
technique as in Kiefer and Nyarko (1989, p. 584, in the proof of lemma 3.4, where a function 
h(x, x’) is used to measurably choose the rational vectors) to conclude that y’ is indeed 
F,-measurable. 
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Proof of Proposition 3.3. We do not assume that the support of the distribu- 
tion of the error term, E, has bounded support. This results in the proof 
being much longer than otherwise. We prove this version as we believe it may 
be of independent interest. 

From the discussion preceding Proposition 3.3, it suffices to show that the 
{y,) process has at least two finite limit points. One can show by a simple 
induction argument that 

y, = pty,, + o! i p’-l + k pt-iEt. (27) 
i=l i=l 

The first two terms on the right-hand side of (271 above converge to finite 
limits as t - 03. Hence yI will have two finite limit points if S, = xi= 1 /3-i~t 
has two finite limit points, which we now proceed to show. It must be stressed 
that we are not assuming that the support of the (Ed) is bounded. Hence S, 
may have limit points at 00 or --00 (indeed, if the support of E~ is the real line, 
then one can show that limsup S, = 00 and liminf S, = - 00, a.e.). 

We now summarize how the proof will proceed. First we show that 
liminf St2 < 03; then we show that liminf S,” is actually a constant, equal to 
some k2 (say). This means that on almost very sample path S, has a limit 
point at either k or -k (with k independent of the sample path). Next we 
show that if S, has one limit point, at k say, then it also has another limit 
point. This will then conclude the proof. 

One can show very easily that 

ES~=EE:~:P’(‘-~)~E&:/(~-_P~). (28) 
i=l 

Then using Fatou’s lemma [see, e.g., Chung (1974, p. 4211, 

E liminf S: I liminf E S: 5 E ~:/(l - p’) < 00, 

which implies that liminf St2 < 00, a.e. 
Next fix an integer N. Write, for t > N, 

(29) 

s, = p* ; p-i&, + (30) 
i=l i=N+l 

Let Jf; = dkN+l, EN+27 . . . I), the a-algebra generated by the random vari- 
ables (E N+lY&N+2,... 1. Note that as t + m the first summation in (30) above 
tends to zero. Hence the limit properties of S, depend only on 

IE N+l, &N+23... 1, and hence liminf S: is measurable with respect to H&. 
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Since N is arbitrary, liminf S,” is therefore measurable with respect to the tail 
g-algebra H_!_ = n”,=,H&. Since the 1~~) are independent, by Kolmogorov’s 
O-l law [see, e.g., Chung (1974, theorem 8.1.411 each event in HA has 
probability zero or one. Hence liminf Sf must be a constant (a.e.). [To see 
this let 2 = liminf S: and note that if Z were not a constant, then there 
exists a number d such that P(Z Ed) > 0 and P(Z > 0) > 0; since {Z Ed) 
and (Z > O} are both HL-measurable, by the Kolmogorov O-l law P(Z Ed) 
= 1 = P(Z > d), a contradiction.] We may therefore write liminf S;” = k2 for 
some k r 0. 

We have therefore shown that S, has a limit point at either k or -k. 
Define A’= {S, has limit point at k} and A-= {S, has limit point at -kf; 
then P(A+ WA -1 = 1. We show in Claim 2 that on A+, S, has a limit point 
different from k; similar arguments show that on A _ S, has a limit point 
different from -k. Hence S, has two limit points on each sample path, and 
this will conclude the proof of the proposition. 

Under the assumption that the E, process is not degenerate and has mean 
zero, there exists e and e’ such that 0 < e < e’ < 00 and P( - e’ 5 E i I -e> > 0. 
We can show: 

Claim 1. Suppose S, lies in G = [-(k + e/2), k •t e/2] and Ed+. , lies in 
[--e’, -e]. Then S,,, lies in G’ = [ -(k + e/2) - e’, k - e/2]. 

Proof. Let G and G’ be as defined in the claim. Suppose S, E G; then 
]p / < 1 implies that &S, f G, so when E, + , lies in [ -e’, -e], S,, , = @S, + E, + , 
lies in [ - (k + e/2) - e’, k + e/2 - e] = G’. n 

Next we prove in CIaim 2 below that on almost every sample path in A +, 
S, visits the set G’ defined in Claim 1 above infinitely often and hence has a 
limit point in G’, which is necessarily different from k. By obvious modifica- 
tions one obtains similarly that on A -, S, also has two limit points. Since 
P(AfuA-) = 1, this concludes the proof of Proposition 3.3. 

Claim 2. On almost euery sample path in A+, S, lies in the set G’ ~d~~~ed in 
CIaim 1 abone) ~~~~ite~y often. 

Proof. Let H, = u&i,. . . , E,)), the c-algebra induced by the random vari- 
ables l&i,. . . , E,}. Define A, = IS, E G1 (with G as in Claim 11, B, = {Ed lies in 
L-e’, -e]}, and C, = {S, Iies in G’}, and note that for each t, A,, f3,, and C, 
all are H,-measurable. From Claim 1 we know that conditional on A,, the 
probability that C,, , occurs is at least P(-e’5cI+i _< -e)=P(-e’s&, 5 
-e> > 0. But recall that from the definition of A+, S, E A, infinitely often on 

A+, so c;=,P(c,+JH,) = 03 on A’. Therefore from the ‘conditional’ 
Borel-Cantelli-Levy lemma [see, e.g., Chow, Robbins, and Siegmund (1971, 
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p. 26)], we conclude that except for a set with probability zero, c, occurs 
infinitely often A+. n 

Proof of Lemma 4.1~. In Lemma 4.lb a similar result is stated for model B; 
one may easily construct a proof of Lemma 4.la from the proof of Lemma 
4.lb which is presented below, so we omit the proof. 

Proof of Lemma 4.lb. From the functional equation (lib) there is a set A 
with P(A) = 1 such that on A, for all t (simultaneously), 

(31) 

where y, = (Y +/3x, + ~$2~ + E,, gt = T(x,, zl, y,, ~~_i); the E operator is taken 
over (cu, P,c$) and E, using pI_r and P(de); and where q is the common 
marginal distribution of z,. Next fix a sample path in A. Let t, and z’ be as 
stated in the lemma, and let x’ be any limit point of the sequence {x, }r=t. 
We shall show that x’ = h’(~~, z’) where pL, is the limiting posterior di&ibu- 
tion (for the fixed sample path in A); since r(x, z, p,) is assumed strictly 
concave in x, ho and therefore x’ is unique, and this would conclude the 
proof of the lemma. 

Replace t with t, in (31) and take limits as II + 03; then noting that r, r, 
and V are continuous in their arguments and V is bounded, one can show’ 

~(/-‘mz’) =r(x’,z’,pL,) +6/E[V(p'm,z) I F,]q(dz), (32) 

where y = (Y + /3x’ + $z’ + E, p; = r(x), z’, y, EL,), and the expectation is 
taken over ((Y, p, 4) and E with respect to p, and p(ds), respectively. 

Now we show that x’ solves the problem 

max r(x,z’,cL,). 
x in X 

(33) 

Suppose on the contrary that there is an 2 in x such that 

r(x’,z’,IL,) <r(%z’,p.,). (34) 

‘Indeed one uses Chung (1974, theorem 9.4.8) to conclude that E[V(p, ,z)lF+,I+ 
E[V(CL),, z)lF,] for each z, then one applies the Dominated Convergence Theore&. 
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From Theorem 2.2 there exists an F,-measurable random variable, y’, such 
that pm has support on the set A4 = {(cu’, p’, 4’): y’ = (Y’ + P’x + 4’2’). Hence, 
if the action x’ is chosen, then under pu, the regression equation becomes 
y = cx + /3x’ + 4.z’ + E = y’ + E. The observation, y, in the next period is then 
equal to y’ plus a noise term so the experiment ‘observe y’ has no informa- 
tion content. Choosing any other action, R, will therefore be more informa- 
tive than the action x’, hence from Blackwell’s theorem [see, e.g., Blackwell 
(1951) or Kihlstrom (1984)l for each z, 

E[W’& I C] ~E[+L,~) I Em], (35) 

where 9 = (Y + /3,? + +z’ + E, Jm = r(i’, z’, 9, pL,), and the E operator is the 
expectation taken over E and (a, p, 4) with respect to pL,. 

Putting (34) and (35) into (32) then results in 

which is a contradiction to the functional equation (llb). This proves that x’ 
solves the problem in (36) and concludes the proof of Lemma 4.lb. Q.E.D. 

Proof of Proposition 4.4. If z, has at least three limit points in its support, 
then from Lemma 3.1 on almost every sample path there will be at least three 
limit points, z, z’, and z” (say). From Lemma 4.lb, corresponding to each 
limit point of the z, process, z, z’, and z”, there will be a unique limit point 
of the x process, X, x’, and x”, respectively. One then uses Theorem 2.2 to 
show that the agent will learn three equations that the true parameter vector 
satisfies; finally one uses the nonlinearity condition to show that these three 
equations are linearly independent. Hence the agent necessarily learns the 
true parameter vector. Q.E.D. 
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