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Summary. Consider an infinitely repeated normal form game where each player is 

characterized by a "type" which may be unknown to the other players of the game. 

Impose only two conditions on the behavior of the players. First, impose the Savage 

(1954) axioms; i.e., each player has some beliefs about the evolution of the game and 

maximizes its expected payoffs at each date given those beliefs. Second, suppose 
that any event which has probability zero under one player's beliefs also has 

probability zero under the other player's beliefs. We show that under these two 

conditions limit points of beliefs and of the empirical distributions (i.e., sample path 
averages or histograms) are correlated equilibria of the "true" game (i.e., the game 
characterized by the true vector of types). 

1. Introduction 

Consider an infinitely repeated normal form game where each player is characterized 

by a "type" which may be unknown to the other players of the game. Impose only 
two conditions on the behavior of the players. First, impose the Savage (1954) 
axioms; i.e., suppose that each player has some beliefs about the evolution of the 

game and maximizes its expected payoffs in each period given those beliefs. Second, 

suppose that any event which has probability zero under one player's beliefs also 

has probability zero under the other player's beliefs. We show that under these two 

conditions there is "convergence" to a correlated equilibrium of the "true" game 

(i.e., the game characterized by the true vector of types): Limit points of beliefs about 

play AND the sample path averages (i.e., the empirical distribution) of play are 

equilibria of the true game. 
The concepts of correlated and especially Nash equilibrium are very important 

in economics. It is therefore necessary to determine when the optimizing behavior 

* I gratefully thank Professor Jim Jordan for very many conversations. I thank Professors J-P Benoit, 
Lawrence Blume, David Easley and Ehud Kalai for very helpful comments. I am also very grateful to 

both the C. V. Starr Center and the Challenge Fund at New York University for their generosity. 
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of players subject to imperfect information leads to equilibrium behavior over time. 

This paper therefore provides answers to the question of how robust the Nash and 

correlated equilibrium concepts are, and whether, when initially out of "equilibrium", 

players can "learn" their way to equilibrium. This research is therefore a continuation 

ofthat began by Blume and Easley (1984). In answering these questions of course, 
to obtain a "good" result one should impose conditions which are as weak as 

possible. The players are facing very complicated decision problems. The less is the 
amount of prior knowledge and coordination we model the players with, the better 

(more "realistic") is the model. Hence we have attempted to do away with, as much 
as is possible, all common prior, independence of types and finiteness assumptions. 

The only consistency condition we impose on players is that they agree on 

probability zero events. This condition is of course much weaker than the usual 

Harsanyi (1968) common prior assumption. We refer to our much weaker consistency 
condition as the Generalized Harsanyi condition (GH). (For an example of what 

could go wrong when condition (GH) is violated see Nyarko, 1991a.) The conditions 
we use in our analysis are also much weaker than those of Kalai and Lehrer (1990), 
who also obtain results on the convergence to Nash equilibrium. Within our frame 

work their assumptions essentially require a finite or countable infinity of types, 
and is violated in applications where the type space is say an interval of the real 

line. Indeed, our main example in Section 2 satisfies all of our assumptions but 

violates those of Kalai and Lehrer (1990). 
This paper is a generalization of earlier papers: Jordan (1991a and b) first studied 

the model considered here. However, the Jordan papers assumed that types are 

"independent." Nyarko (1992) also studied that model under a type-independence 

assumption, but relaxed the common prior assumption used in the Jordan papers. 
Jordan (1991a and b) and Nyarko (1992) all concluded that when the types are 

independent, convergence is to the Nash equilibrium of the true game. The concept 
of a correlated equilibrium was introduced by Aumann (1974) and is the natural 

extension of the concept of a Nash equilibrium, allowing players' actions to be 

correlated by some external signals, say. This paper allows for types which are not 

"independent" and hence allows for correlated equilibrium behavior even in the 
limit over time. When we assume that types are independent (or, stronger yet, when 

they are common knowledge) then the results of this paper imply convergence to 

Nash equilibrium. Since our method of proof is different from Jordan's we obtain 
an alternate route for obtaining those results. The Jordan papers provided results 
on convergence of beliefs. One may ask: What do the beliefs have to do with the 

actual play of the game? We provide here results on both beliefs AND the empirical 
distributions, and show that beliefs and actual sample path empirical distributions 

merge. Hence the latter is over time an equilibrium distribution. 

Following Harsanyi (1968) and Mertens and Zamir (1985) a "type" represents 
a player's utility function AND that player's beliefs about others in the game. Hence, 
almost by definition, a player's beliefs should be allowed to depend upon its type. 

Hence we believe that the relaxation of the independence of types assumption of 

Jordan (1991) and Nyarko (1992) is important. However, with this relaxation our 

limit points are in general correlated, as opposed to Nash, equilibria. 
To perhaps illustrate the strength of our results consider the following. Take 

any finite action normal form game where no player has a strictly dominated action. 
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Impose our condition that players agree on probability zero events and are 

optimizing. Impose no other condition. Fix any finite time horizon. Then within 

that finite time horizon any play is possible, given some beliefs of players. Agreement 
on probability zero events does not preclude any behavior in finite time. However, 
after a "long" time there will be "a lot of" agreement as to the future play of the 

game. (See Theorem 8.2 for details of this.) Hence in the limit there will be total 

agreement as to the future play, and hence that play must be an equilibrium (either 
Nash or, when types are not independent, correlated). 

To further illustrate our results consider a game with a unique mixed strategy 
Nash equilibrium. Suppose there is no imperfect information on types. Then our 

results show that beliefs and the sample path empirical distributions converge to 

the mixed strategy Nash equilibrium of the game. This is true despite the fact that 

each player may be choosing a pure strategy at each date. This therefore provides 
a rationale for the use of mixed strategies in terms solely of play under Bayesian 

Rationality. This of course is related to the much earlier arguments of Harsanyi 

(1973). 
As an example where our Generalized Harsanyi condition (GH) (i.e., agreement 

on probability zero events) is violated, consider the standard versions of fictitious 

play. In fictitious play, each player believes that others are choosing strategies 

according to a fixed but unknown distribution, independently across time. Each 

player optimizes given these beliefs. Hence, each player is actually choosing a 

strategy which is highly time-dependent. However, each player believes the others 
are choosing time-independent actions. Such models violate our condition (GH). 
Such models are therefore able to generate non-convergence to Nash (or correlated) 

equilibrium, which is not possible in under condition (GH). 
In Section 2 below we provide examples which illustrate ALL of the major 

results of this paper. The rest of the paper is devoted to formally stating the insights 
of the examples. Concluding remarks are provided in Section 11. All proofs are 

relegated to the appendix. 
The results of this paper are for a model where players at each date maximize 

their within-period expected utility (i.e., the discount factor is zero). The results and 

techniques of this paper carry over immediately to the positive discount factor case. 

However in that model there are some subtle and important details on the definition 

of a correlated equilibrium. We therefore leave the full treatment of that case to a 

forthcoming paper. 
This paper is related to the "Bayesian" models where uncertainty may be 

"reduced" imperfect information over an unknown parameter. This includes Blume 

and Easley (1984), Easley and Kiefer (1982), Feldman (1987) and Nyarko (1991b). 
However, such a "reduction" is not possible in the model of this paper, and the 

techniques used here are very different. Convergence to a correlated equilibrium in 
a very different model has also been obtained by Koutsougeras and Yannelis (1992). 

2. Examples 

2.1. Consider the following 3-person game payoff matrix (used by Aumann (1974) 
in a slightly different context): 
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0,1,3 

1,1,1 

0,0,0 

1,0,0 

2,2,2 

2,2,0 

0,0,0 

2,2,2 

0,1,0 

1,1,1 

0,0,0 

1,0,3 

Player A chooses the row (Top or Bottom), B chooses the column (Left or Right) 
and C chooses the matrix (First, Middle or Third). 

Using dominance arguments it is easy to see that in any Nash equilibrium to 

the above normal form game, Player A chooses Bottom, Player B chooses Left 

column and player C randomizes (with any probabilities) between the First and 

Third matrices. 

Let co be a realization from infinitely many independent and identical coin 

tossing experiments where an outcome from {Heads, Tails} is chosen with equal 

probability. Hence co is an element of {Head, Tails}00. Players A and B are told 

of the realization of co. We may consider player A's "type" to be xA = co, Player B's 

"type" to be xB 
= co, so that xA 

= 
xB. Player C is not told of co but knows how it is 

chosen (i.e., C knows the distribution of co). Player C has a trivial type space 

(consisting of a singleton element, say, representing "no information"). 
Let con denote the n-th coordinate of co. In particular co?e{Heads, Tails}. Consider 

the following strategies for the players: At each date n, Player A of type xA 
= co 

chooses Top at date n if co? = Heads and Bottom if co? = Tails. Player B of type 
xB 

= co chooses the Left Column if con = Heads and Right if con = Tails. Player C 

chooses the Middle matrix all the time. It should be easy to see that if any player 
believes the others are choosing actions in the manner just described then it is 

optimal for that player to choose actions in the manner described above for that 

player. In particular, each player is choosing a best response at each date to its 

beliefs about the other players. 
Under this behavior, observe that Middle matrix is chosen at each date. This 

is not a Nash equilibrium action for the true game. Hence we have, 

Observation 1: The actions or play of the players need NOT converge to a NASH 

equilibrium of the true game. 

Consider the beliefs of players about the date n play, conditional on the history 
of the game from date 1 through date n ? 1. These beliefs will assign probability 
one to Middle matrix being played. Middle is not part of any Nash equilibrium. 
In particular we have, 

Observation 2: The beliefs of players about the future play of the game conditional 
on the past (either conditional or not conditional on players own realized types) 
need NOT converge to a Nash equilibrium of the true game. 

This example appears to contradict the conclusions of Jordan (1991a and b) and 

Nyarko (1992), where convergence of beliefs to a Nash equilibrium was proved. 
However, notice that the Players' beliefs about the types of others are not 

independent of their own type; indeed, we have extreme dependence with xA = xB. 
Hence the independence assumptions used in the just-mentioned papers are 

violated. This example, and in particular observation 2 above, shows that when that 

independence assumption is violated the conclusions of those papers fail. 
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However, notice that the behavior we have described in this example is actually 
a correlated equilibrium. Players A and B use the outcomes of the coin-tosses to 

coordinate their actions across (Top, Left) and (Bottom, Right). The outcomes 

(Top, Left, Middle) and (Bottom, Right, Middle) with probability 1/2 each constitutes 
a correlated equilibrium distribution. In particular, suppose a "Principal" (or 

correlating device) "suggests" that Player A should play action Top. Then A knows, 
in the correlated equilibrium, that B and C will play Left and Middle respectively, 
so it is optimal for A to follow the suggestion of the Principal. Similarly for B. In 

the correlated equilibrium the only action that will be suggested to player C is the 

action Middle. C assigns equal probability to A and B choosing action pairs (Top, 
Left) and (Bottom, Right). Hence following the suggestion of the Principal is 

optimal. This verifies that (Top, Left, Middle) and (Bottom, Right, Middle) with 
probability 1/2 each is indeed a correlated equilibrium distribution. 

Note further that this distribution is also the beliefs of each player about the 
next period play of the game not conditioning on own types. In particular, if we asked 

each player to predict the outcome of the future of the game conditional on only 
the history of the game but not conditional on their own realized type then each 

player would predict the play to be (Top, Left, Middle) and (Bottom, Right, Middle) 
with probability one half each. This illustrates one of the main results of this paper 

(Theorem 9.1 below), namely, 

Result 1: Beliefs of players about the future of the game conditional upon the past 
of the game but not conditional upon own types converge to a correlated equilibrium 
distribution for the true game. 

Beliefs about the future of the game conditional upon the past and conditional 

upon own types do not converge to the set of correlated equilibria. Indeed, A's belief 

about the date N play of the game conditional upon A's realized type and the history 

preceding date N is either that (Top, Left, Middle) will occur with probability one 

or that (Bottom, Right, Middle) will occur with probability one. (Which will occur 

is of course determined completely by the date N coordinate, coN, of A's realized 

type o.) However, neither of the outcomes (Top, Left, Middle) with probability one 

or (Bottom, Right, Middle) with probability one is a correlated equilibrium since 

in either case Player C will be choosing a sub-optimal action. In particular we have, 

Observation 3: Beliefs of players about the future of the game conditional upon the 

past of the game and conditional upon own types need not converge to a correlated 

equilibrium distribution for the true game. 

Let us now look at actual play again. We may invoke the strong law of large 
numbers to conclude that for almost every sample path, in each sufficiently long 

history or play of the game the outcome (Top, Left, Middle) will occur for approxi 

mately as many periods as the outcome (Bottom, Right, Middle). In particular the 

average number of times each outcome will occur will in the limit be equal to 1/2 
for almost every sample path. This outcome is the same as the limit point of beliefs 

of players (see Result 1 above), and in particular is a correlated equilibrium for the 

true game. This illustrates the second main result of this paper (Theorem 9.6): We 

define the empirical distribution of play to be the distribution (or histogram) 
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obtained by taking the average number of occurrences of each action in the past 

history. 

Result 2: The empirical distribution of play converges to a correlated equilibrium 
distribution for the true game. Further, the beliefs of players not conditioning on 

types and the empirical distribution of play converge to the same limit point over 

time. 

2.2. Example: The need for sub-sequential limit points. The example of Section 2.1 

may have given the impression that we will be proving the convergence of beliefs 

and empirical distributions. In the example of that section such convergence did 

indeed take place. However, for a general game the beliefs about the future of the 

game need not even converge. Consider the following coordination game with two 

players, Player A (the row player) and Player B (the column player). 

1,1 

0,0 

0,0 

1,1 

Suppose that at every even period the players choose actions (Top, Left) while at 

every odd period they choose the actions (Bottom, Right). Each player will then be 

best responding given their beliefs about the other. However each player's beliefs 

about the future of the game conditional on the past do not converge. Instead the 

beliefs have two limit points: (Top, Left) along the sub-sequence of even dates and 

(Bottom, Right) along the sub-sequence of odd dates. Hence result 1 of example 2.1, 
will actually be stated in terms of sub-sequential limits: Any limit point of Beliefs 

of players about the future of the game conditional upon the past of the game but 

not conditional upon own types is a correlated equilibrium distribution for the true 

game. 

We now illustrate that for some games the empirical distribution need not 

converge either. Indeed, fix any sequence of numbers {xn} = t taking values of either 

0 or 1 such that the averages X*= i xJN do not converge but oscillate between being 

arbitrarily close to 0 and arbitrarily close to 1 infinitely often. (This can of course 

be done by choosing xn to be equal to 0 for a long time, then equal to 1 for an even 

longer time then equal to 0 for a yet longer time, etc.) Suppose now that players 
choose actions (Top, Left) at each date n where xn = 1 and choose actions (Bottom, 

Right) otherwise. Then it should be clear that the empirical distribution of play does 

not converge, but instead oscillates between arbitrarily high average for (Top, Left) 
to an arbitrarily low average. 

However, consider now a sub-sequence of dates where beliefs about next period 

play conditional on the past converges. In this simple example this will be a 

sub-sequence of dates where either (Top, Left) is played at each date or where 

(Bottom, Right) is played at each date. Along such a sub-sequence of dates the 

empirical distribution will converge. The limit point of the empirical distribution 

along any such sub-sequence is of course is either (Top, Left) with probability one 
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(i.e., with limiting average equal to one) or (Bottom, Right) with probability one. 

Either of these will constitute a correlated (actually Nash) equilibrium. 
Hence result 2 of example 2.1, will actually be stated in terms of sub-sequential 

limits. Our result will say, loosely speaking (and see Section 9 for details) the 

following: Fix a sample path. Suppose that along a sub-sequence of dates beliefs of 

players about the future of the game conditional upon the past of the game but not 

conditional upon own types converges to some limit point, v say. We know from 

Result 1 that v must be a correlated equilibrium for the true game. Our result states 

that the empirical distribution of play, constructed along that sub-sequence (i.e., 

using only observations on that sub-sequence) also converges to the limit point v. 

2.3. What if types are common knowledge? Suppose that all utility parameters are 

common knowledge and that there is no uncertainty about "types". Without 

imperfect information on types, beliefs conditional on types and beliefs not 

conditional on types are the same. Also there are no types to allow correlation in 

actions of players. Hence (sub-sequential) limits of beliefs conditional on types must 

be Nash as (opposed to correlated equilibria). The same of course is true of the 

sample path averages (empirical distributions) along the convergent sub-sequences 
of beliefs. More is true: Since player i knows its own actions, i's beliefs conditional 

on i's type equals i's actual play. Our previous assertion therefore implies that limit 

points of actual play and not merely beliefs about play are Nash equilibria. (See 
Section 10 for the details.) 

3. Some terminology 

I is the finite set of players. Given any collection of sets {Sjie/, we define S = 
n?ejS? 

and S_f = 
Ylj*iSj- 

Given any collection of functions f : S( 
- 

Yf for iel, /_? :S_, 
- 

Y_f 
is defined by f-^s-^Ylj^J^Sj). 

The Cartesian product of metric spaces will 

always be endowed with the product topology. Let S be any metric space. 0>(S) is 

the set of probability measures on (Borel) subsets of S. Unless otherwise stated (and 
we will!) the set ??(S) will be endowed with the weak topology. If S is a cartesian 

product of the form n?ejS?, then &0(S) will denote the set of all product measures 

on riieA. Given any ve^(S) we let v (ds) denote integration: ?h(s)v(ds) is the integral 
of the real-valued function h on S with respect to v. If S is a Cartesian product 
S = Y x Z we let v(dy) denote integration over Y with respect to the marginal of v 

on K. The latter will often be denoted by Margyv. SR denotes the real line. 

4. The basic structure 

4.1. Following Jordan (1991a) we have the following basic structure of the game. / 

is the finite set of players. S? represents the finite set of actions available to player i 

at each date n = 1,2,... ; S = 
n?e/S/- Eyen though the action space Sf is independent 

of the date we shall sometimes write S? as Sin when we seek to emphasize the set of 

action choices at date n. SN = 
Ylr=is and s?? - IX* i S are the set of date N and 

infinite histories, respectively. SN and S00 are endowed with their respective product 
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topologies. sN and s00 will denote generic elements of SN and S00 respectively. 5? will 
denote the null history, (at date 0, when there is no history)! Perfect recall is assumed; 
in particular, at date n when choosing the date n action sin the player i will have 
information on sn~* = 

{sx,...,s?_ x}. 

4.2. Payoff functions. Each player i has an attribute vector which is some element 

9i of the set 0,. The attribute vector will represent the parameter of its utility function 
unknown to other players in the game. 1^:0, x S-+9R is player fs (within period or 

instantaneous) utility function which depends upon its attribute vector, 9h as well 
as the vector of actions, seS, chosen by all the players. We assume that u? is 
continuous and uniformly bounded on it's domain. We shall suppose that 9? is a 

compact subset of finite dimensional Euclidean space. This is without loss of 

generality since the set of joint actions, S, is assumed finite. We suppose that the 

players know the functional forms of each player's utility function, {u,}i6/. Each 

player i knows its own attribute vector 0, but does not necessarily know those of 
other players, 0_,. 

5. Equilibria for the complete information problem 

5.1. Nash equilibria. Recall that &oiS) is the set of all product measures over 

S = 
UieiSr Define for each iel and {9}ieIe9, 

ND,(0) = 
{ve^oiS): s,eArgmax Jii^,..s-Mds-i)for v"ae- si?Si} and 

NDsfl^ND^) 
ND(0) is the set of Nash equilibrium distributions, where all players are best 

responding to the others. 

5.2. Correlated equilibria. Correlated equilibria are typically defined using 

"correlating devices" which involve expanding the space of uncertainty arid 

endowing players with information partitions representing the correlated signals 
received by those players. (See Aumann (1974).) We shall use the following definition 

which involves conditioning on actions. This is equivalent to the definitions that 

involve information partitions. 
Fix any iel, 9 = 

{0?}i /e0 and Qe&iS). Define 7,(0,, Q) to be the set of all actions, 

s^Si, which are optimal for player i when the actions of other players are governed 

by Qi'\Si). Also define ^?(0?) to be the set of all distributions of play, Q, for which 

the above statement is true for all date one actions excluding possibly a set with 

?-probability zero. I.e., 

Yii9i,Q) = 
{s*eSi:s*eArgmaxluii9i,.,s-i)Qids-i\s*) (5.3) 

and 

0,(0,) s {?eW:?(Yf(0??)) 
= 1}. (5.4) 

Finally, define 

CW = 
r\t?Ct(6t) where 6 = 

{6t}M. (5.5) 

C(0) is the set of all correlated equilibrium distributions of play. Any Q in C(0) is such 
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that for all is I and for ?-almost almost all sfeSi the following is true: if the "Principal 

suggests" the action sf to player i and player i believes that the other players are 

choosing actions according to Q(.\st) then s, is an optimal action for that player. It 

is these "suggestions" which allow for correlation of the players' actions. 

It should be clear that any correlated equilibrium distribution which satisfies 
some kind of independence across players should be a Nash equilibrium. Indeed, 
fix any 0e 0 and QeC(0). Suppose that under Q each player's action is independent. 
I.e., suppose that Q is a product measure so that for all 5 = 

{Si}ieIeS, Q({s}) 
= 

YlieIQ({si}). Then it should be clear that 6 is a Nash equilibrium distribution; i.e., 

OeND(0). 

6. The imperfect information problem 

6.1. The type space. Player iel may be any "type" in a type space Th assumed to 

be a complete and separable metric space. We set T= YlieITi. Player i's type, xh 

specifies, among other things, that player's attribute vector, 0?. We let 0,(1,) denote 

the attribute vector of player i, type x?; 0? : Tf -? 0f is therefore the projection mapping 
from the type space T? representing the i-th player's attribute vector into 0?. 

6.2. Bayesian strategy processes without common priors. We fix a collection of 

probability distributions {^?}iei over T x S??. /xf represents the ex ante beliefs player 
i has about the evolution of the game before i has realized its own type. The ex post 

beliefs are therefore ///(It,). The collection of measures, {Hi} ieI^Y\iel^(T 
x S00), is 

a Bayesian Strategy Process (BSP) for the game with (not necessarily common) 

priors if for each iel, 

/i,.({(?,OeTx S??|for all N, siN+1 maximizes 

?ui(6i(x^.9s_iN+?)dfii(ds_iN + 1\sN,siN+?,xi)})=l. (6.3) 

Condition (6.3) requires that at each date N given player i's beliefs about the 

evolution of the game, ni(.\sN,siN+i,xi), player i maximizes its expected utility. (6.3) 

by itself does not imply that under i's beliefs about the game other players j ^ i are 

maximizing their expected utility. (However, this latter assertion will hold under 

condition (GH) which will be introduced in Section 7.) 
Note that we have not ruled out correlation in players' choice of actions. In 

particular, we do not impose the following assumption: 

Ht(dsN+i\sN, X) 
= 

Tljeil*i(dSjN+ l |sN, i,). (6.4) 

Condition (6.4) is indeed a natural assumption to impose, and it holds if players 
choose actions at each date simultaneously. Condition (6.4) is used by Jordan (1991a 
and b) and Nyarko (1992) to obtain a result on the convergence to Nash equilibrium 
behavior. Since our main result will be convergence to correlated equilibrium, we 

have no need for (6.4). We will impose (6.4) in Section 10 when we indicate how the 

earlier results on convergence to Nash equilibria are special cases of our results on 

the convergence to correlated equilibria. We separate all the independence assump 
tions so that it becomes clear what assumptions are used for the various conclusions. 

General conditions for the existence of BSP's where correlated actions are 

allowed is provided in Cotter (1991) and Yannelis and Rustichini (1991). 
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7. The generalized Harsanyi consistency condition 

We will impose the following condition on the beliefs of players, {//?}?e/, which 

requires that, ex ante, the players agree on probability zero events. The Harsanyi 

(1968) common prior assumption requires p? = 
pj for all i and). Our condition (GH) 

below is therefore a generalization of the Harsanyi assumption. The common prior 

assumption is used by Jordan (1991a and b). 
Given any two probability measures p' and p" on some (measure) space ?2, we 

say that p' is absolutely continuous with respect to p" if for all (measurable) subsets 

D of A p\D) > 0 implies that p'\D) > 0. We then write p' ? p". We say that p' and 

p" are mutually absolutely continuous with respect to each other if pi ? p" and 

p" 
? 

p'. 

7.1. Condition (GH): The measures {/??}/ / in ̂ (T x S00) are mutually absolutely 
continuous with respect to each other. 

Condition (GH) does not require the ex post probabilities, /??(|t,) and |??(-|t?), 
to be mutually absolutely continuous. We shall use the following much weaker 

version of condition (GH): 

7.2. Condition (GGH). There exists a measure p* over T x S00 such that for all iel, 

p* is absolutely continuous with respect to p?. 

One may wish to interpret p* as the "true" distribution of the types and play 
while Pi is player i's beliefs. Any event which has positive probability under p* in 

condition (GGH) will have strictly positive probability under p( for each iel. The 

converse however need not be true under the weaker condition (GGH). When 

condition (GGH) holds we shall state our results in terms of the measure p*; that 

condition should therefore be thought of as providing such a measure. If condition 

(GH) holds, to obtain condition (GGH) we may take the measure p* to be equal 
to any of the p{s or indeed any measure over T x S00 which is mutually absolutely 
continuous with respect to any (and therefore all) of the p?s; e.g., p* may be taken 

to be the average measure Zie//i//(#I). 

7.3. Remark. As will soon become apparent, the principal use of condition (GH) 
or (GGH) is to ensure agreement in the limit about play of the game; (in particular 
its main use will be to prove Theorem 8.2 below). Hence, for all the main results of 

this paper, we may replace conditions (GH) and (GGH) above with assumptions 
which require only absolute continuity of the marginals of pt on S00 and not necessarily 
over all of T x S00. In particular, beliefs of players about types are by themselves 

unimportant. We use assumptions (GH) and (GGH) as stated above because it is 

expositionally more convenient. 

7.4. Remark. Let p* denote the true distribution of play for the various player 

types. The absolute continuity assumption of Kalai and Lehrer (1990) requires that 

for each i in / and for each T = 
{T,}i6/eT, ;i*(.11)?!!,( |t,). In particular, their 

assumption requires ex post absolute continuity. Our condition (GGH) is weaker 

and requires only ex ante absolute continuity. In particular example 2.1 obeys 
condition (GH) but violates the Kalai and Lehrer assumptions. For their assumption 
to hold the set of ("behavior equivalent classes") of types must be finite or countably 
infinite. (See Nyarko 1991b for details.) 
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8. (GH) Implies that beliefs about the future "merge" 

The following Lemma follows immediately from Black well and Dubins (1963) 
theorem on "Merging of Opinions": Let fii(dsn+1\sn) denote the probability 

distribution over the date n + 1 actions conditional on the "past," sn, with respect 
to the measure /??. The norm || || denotes the total variation norm on 5; i.e., given 

p, qe?(S), 

||p||sSup?||*?)-9(?)| (8.1) 

where the supremum is over (measurable) subsets E of S. 

The theorem below implies that for each i and; in /, the beliefs of the players about 

the future of the game conditional on the past, {Pi(dsn + x | s")} *= x and {?ij(dsn+^ | s")} ?= x 
have the same limiting behavior and share the same limit points along any sub 

sequence of dates in each sample path. Observe that these conditional probabilities 
are not conditioned on players' types. 

8.2. Theorem (Blackwell and Dubins). Suppose that the measures {//,}i / onixS00 

obey condition (GGH) and let /** be as in that condition. Define 

^{(T^erxS*:^ (8.3) 

Then 

fi*(W)=\. (8.4) 

9. Convergence to correlated equilibria 

We now show that the probability distribution of the future of the game conditional 
on the past, Hi(dsN+1\sN), converges to the set C(0) of correlated equilibrium dis 

tributions for the true attribute vector 0. Recall that ?P(S) is endowed with the 

topology of weak convergence. Given any subset C of ?P(S) and any sequence of 

measures {qn} *= x in &(S) we write q?^?C if any limit point of the sequence of 

measures lies in the set C. 

9.1. Theorem (Beliefs converge to correlated equilibria). Let {/?,}t6/ be a BSP. 

Suppose condition (GGH) holds and let n* be as in that condition. Define 

G = 
{(x,s^):iii(dsN+l\sN)-^C(e(x)) for allie/} (9.2) 

Then fi*({GnW})=\ where W is as in (8.3). (A sketch of the main idea of the proof 
and the intuition behind it is given in the appendix, as is the proof itself.) 

9.3. The convergence of the empirical distributions (i.e., sample path averages). In 

Theorem 9.6 below we relate the limit point of beliefs (as discussed in the previous 

sub-section) to sample path empirical distributions (i.e., the distributions obtained 

by taking a histogram or sample path average of occurrences of the different vectors 

of joint actions of players). Related results on the convergence of empirical dis 

tributions are also reported in Jordan (1992). Our results are as follows: 

Fix a sample path and suppose that along that sample path the beliefs about 

the future conditional on the past, but NOT conditional on own types, //l(dsII+ x \sn), 

converges as n-+ oo. Let us denote that limit point by ve?P(S). From Theorem 8.2 
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v is independent of i. Part (a) of our result (Theorem 9.6 below) concludes that the 

empirical distribution also converges to v. In particular, fix any s*eS, and define 

lw(s*) to equal one if sn 
= s* and l?(s*) 

= 0 otherwise. Then ?*= x ln(s*)/N converges 
to v({s*}) as N -* oo. From the results of the previous sub-section we know that any 
limit point of beliefs is a correlated equilibrium. Hence, we may conclude that on 

any sample path where these beliefs converge, the empirical distribution is in the 

limit a correlated equilibrium distribution for the true game. 
We know from the example of Section 2.2 that beliefs about the future given the 

past do not necessarily converge. Part (b) of our result (Theorem 9.6) handles this 

case. It states that beliefs and empirical distributions "merge" along convergent sub 

sequences. The result states, loosely speaking, the following: Fix any sample path. 

Suppose that along a sub-sequence of dates beliefs about the future given the past, 

piidsn+l\sn), converges to some limit point, ve^(S). Then the empirical distribution 

constructed along that sub-sequence also converges to v. Since the limit points of 

beliefs are correlated equilibria we conclude that those limit points of the empirical 
distributions are also correlated equilibria. 

Notice that in the above we used the language "loosely speaking." Even though 
the statement above is intuitively correct there is a technicality that must be taken 

care of. In particular, when forming the empirical distributions along a sub-sequence 
of dates, we need to take a "rich" enough set of dates in that sub-sequence. The 

formal statement of part (b) of our result is as follows. Fix a sample path and suppose 
there is a sub-sequence of dates such that along that sub-sequence the beliefs, 

Piidsn+1\sn), converge to some ve^(S). Fix any arbitrarily small neighborhood of 

v, and refer to this neighborhood as A. (For measurability reasons we restrict atten 

tion to neighborhoods which are intervals (or rectangles) with rational end-points or 

(vertices).) Construct the empirical distribution from only the periods where the 

beliefs, Piidsn+l\sn), lie in the neighborhood A. Then our result states that the 

empirical distribution thus constructed will lie in the neighborhood A. The example 
below shows what could go wrong if we take "too thin" a sub-sequence of dates. 

9.4. Example. There are two players, A and B. Player A chooses the row: Top, 
Middle or Bottom. Player B chooses the column: Left, Center or Right. The payoff 
matrix is as below: 

1,1 1,-1 0,0 

1,-1 -1,1 0,0 

0,0 0,0 1,1 

Notice that if we exclude the actions Bottom and Right, the payoff matrix is 

that of a "matching pennies" game. 

Suppose the play of the game is as follows: On each even date the players play 
the unique mixed strategy Nash equilibrium of the matching pennies part of the 

game: I.e., Player A uses the mixed strategy which randomizes with equal probability 
over the actions Top and Middle and B uses the mixed strategy which randomizes 

with equal probability over the actions Left and Center. On each odd date Player 
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A chooses action Bottom while B chooses action Right. It is easy to see that under 

this behavior each player is best-responding to the other. 

There are two limit points of beliefs of players about the future of the game: One 

limit point assigns probability of 1/4 to each of the four vectors of actions in the 

matching pennies part of the game. Another limit point of beliefs assigns probability 
one to the vector (Bottom, Right). In obtaining convergence of the empirical dis 
tribution along sub-sequences it should be clear what sub-sequences to choose from. 

Either we take the sub-sequence of even dates or the sub-sequence of odd dates. 

If, however, we take too "thin" a sub-sequence we may not obtain convergence 
of the empirical distribution to the limit point of beliefs. In particular, fix a sample 

path and consider the sub-sequence of dates where the action vector (Top, Left) 
occurs. On almost every sample path there will indeed be a sub-sequence of such 
occurrences. Of course along that sub-sequence the empirical distribution will 

always assign probability one to the action vector (Top, Left). The empirical dis 
tribution along that sub-sequence therefore does not converge to the limit point of 

beliefs. Since (Top, Left) is not a Nash or correlated equilibrium, the empirical dis 

tribution also does not converge to the set of correlated equilibrium distributions. 
Our chosen sub-sequence is "too thin." 

The use of neighborhoods A as described in Section 9.2 will enable us to pick 
out the even or odd sub-sequences of dates. Suppose we take A to be a small 

neighborhood around the probability which assigns mass of 1/4 to each of the 

vectors on the matching pennies part of the game. Players' beliefs will lie in this 

neighborhood at precisely the sub-sequence of even dates. If A is a small neighbor 
hood of the probability which assigns point mass to {Bottom, Right} then we pick 
out the sub-sequence of odd dates. The use of these neighborhoods provides us with 
a "rich" enough sub-sequence of dates. 

9.5. The statement and proof of Theorem 9.6 below is really a probability-theoretic 
result and does not use anywhere the fact that players are optimizing. The result 

states that beliefs (i.e., conditional probabilities of the future given the past) and 

sample path empirical distributions "merge" over time (i.e., have the same sub 

sequential limits). The theorem is stated for any general pe&iT x 5??). It is easy to 

see how this theorem and condition (GH) or (GGH) prove all the assertions made 

above. We now state and prove this theorem. 

We use the following notation in the result below. Given any event ? let \E 

represent the indicator function on E (equal to one if E holds and equal to zero 

otherwise). 

9.6. Theorem. Let p be any measure on T x S??. Then the following is true for each 

sample path (T,s??)eT x S00 (outside of a set with /?-probability zero): 

(a) Suppose that for some ve0\S), along the given sample path lim,,^ pidsn+ 1|s") 
= v. 

Fix any s*eS. Then, along the sample path the average number of times s* 
occurs is in the limit equal to v({s*}). I.e., lim^^ Z*=1 l{Sn=s*}/iV 

= 
v({s*}). 

(b) Suppose that for some ve&iS), along the given sample path there is a 

sub-sequence of dates {w(fc)}??=1 such that along the sub-sequence lim^^ 

viande) +115"ik))= v- Fix any s*eS. Let A be any arbitrarily small non-degenerate 
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closed interval with rational endpoints which contains v({s*}). Then 

where 

Zn 
= 

Mm({s?+ i =S*}|s?) yl}- (9.7) 

10. Independence of types implies convergence to Nash equilibria 

In obtaining the convergence to Nash equilibria result of Jordan (1991a and b) and 

Nyarko (1992) the assumption below is used (in addition to (6.4) above). This 

assumption requires that each player fs beliefs about the types of others is 

independent of player i's type: 

10.1. A type-independence assumption. Define n? 
= 

Margr/i,. Then nx is a product 
measure on the type space T; i.e., 7it = 

ITfe/[Margin,] 

The example provided in Section 2.1 obeys (6.4) but violates (10.1). Hence 

without (10.1) the result on the convergence to Nash (as opposed to correlated) 

equilibria obtained in the Jordan (1991) and Nyarko (1992) does not hold. An 
immediate corollary of our Theorem 9.1 is that if players choose actions indepen 

dently and the priors over types are independent (i.e., if (6.4) and (10.1) hold) then 

beliefs of players converge to a Nash equilibrium distribution. It is easy to see why this 

is so. Under (10.1) and (6.4), each player i's beliefs about date N + 1 play conditional 
on date N history will be a product measure; i.e., Pi(dsN+ x \sN) 

= 
T\jti?i(dsJN+1 \sn) 

Any limit point of beliefs will also have this property. We know from the previous 
section that any limit point of beliefs is a correlated equilibrium. As explained at the 

end of Section 5, any correlated equilibrium distribution with the above mentioned 

product measure property is necessarily a Nash equilibrium distribution. Hence 

limit points of beliefs are Nash equilibria. We therefore obtain the conclusions of 

Jordan (1991a and b) and Nyarko (1992) as special cases of Theorem 9.1: 

10.2. Corollary. Let {m?}? / be a BSP and suppose condition (GGH) holds. Also 

suppose that (6.4) and (10.1) hold. Recall that the set W is defined in (8.3). Define 

G = 
{(T,soo):^(dsiV+1|5Ar)-?ND(0(T)) for all iel} 

Then/?*(Gn WO =1. 

103. Remark. Of course, from Theorem 9.6 we may conclude that under the 

conditions of Corollary 10.2 the empirical distribution (constructed along the 

appropriate sub-sequences) are also Nash (as opposed to correlated) equilibria. 

10.4. Model with types common knowledge. Suppose now that there is only one 

vector of possible types (or, alternatively, that the vector of types is common 

knowledge). Then, trivially, condition (10.1) holds. If players choose actions 

simultaneously (so that (6.4) holds) then Corollary 10.2 implies that any limit point 
of beliefs is a Nash equilibrium. Since there is only one vector of types, each player's 
beliefs about it's own play not conditioning own types is equal to beliefs 
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conditioning on types which in turn is equal to actual play of that player. Hence 

actual play, and not merely beliefs about play, converges to a Nash equilibrium. I.e., 

10.5. Corollary. Let {/??}?6/ be a BSP and suppose condition (GGH) holds. Also 

suppose that (6.4) holds and the type space T is a singleton (or equivalently the true 

vector of types is common knowledge.) Define p** to be the true distribution of 

play, i.e., that induced by {/*/}i6/. Define 

G** = 
{(T,s00):/i**(d5iV+1|sN) ?ND(0(t)) for all iel} 

Then p*iG** n W) 
= 1 where W is as in (8.3). 

11. Concluding Remark 

We quote from Aumann (1987): 

"The equilibrium concept of Nash... is without doubt the single game-theoretic tool that is most applied 
in economics. Yet... a little reflection leads to some puzzlement as to why and under what conditions 

players... might be expected to play such an equilibrium." 

The axioms of Savage (1954) imply Bayesian Rationality; i.e., players maximize 

subjective expected utility. Aumann (1987) argues that Bayesian Rationality 

(without common priors) is equivalent to a subjective correlated equilibrium. We 

show that the repeated play of a game where Bayesian Rationality is assumed and 

there is agreement on probability zero events (and nothing else!) leads to an objective 
correlated equilibrium. We therefore have a justification of such equilibrium in 

terms of the behavior of players over time under Bayesian rationality. 

12. Appendix: The proofs 

Proof of Theorem 9.1.: The proof will proceed in three steps: In Step I we use 

condition (GGH) to relate convergence for any player i on sample paths with 

/??-probability one to convergence for all players, on sets with /?"-probability one. 

In particular, we first prove (in lemma 9.1.1 below) that Ht suffices to show that for 

each i, player i's beliefs about the next period play of the game Not conditioning 
on /'s type xi9 i.e., /*,(*&? +Js"), converge to the set of correlated distributions of 

one-period play where i is best responding, C^?,). This will be the only part of the 

proof using condition (GGH). 
We will define G? to be the set where the above mentioned convergence occurs. 

In Step II of our proof we use the separating hyperplane theorem to show that on 

any sample path outside of Gf there will exist two disjoint sets (which we will denote 

by B and 0), which can be separated by a vector x, such that for infinitely many 
dates n, beliefs conditional only on history (and not on own types) lie in B while 

beliefs conditional on history and own types belongs to 0 (i.e., piids_in+?\?t, sin+?)eB 
and Piids_in+x \s", sin+19 Tf)e</>). 

In Step III of our proof we show the following: The set of sample paths where 

infinitely often beliefs conditional on type lie one set, B9 and beliefs not conditional 

on types lie in another set, <j>, is a set of sample paths with zero probability if the 
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sets B and </> are disjoint and can be separated. This part of the proof is stated with 

some generality in the hope that it will be of independent interest. 

Step II and Step III imply that /??(Gf) 
= 1. Step I implies that this suffices to 

prove the theorem. Now the details! 

Step I: Recall that the set G is defined in (9.2) and W in (8.3). We seek to show that 

/x*({(T,5 )eGn^})=l. (12.1) 
Define 

Gf s {(t,s-):a(&.+ 1 |s")-? CAOfa))} (12.2) 

where, recall, the convergence -* is as defined in the beginning of Section 9. We 

have the following: 

Lemma 9.1.1. To prove (12.1) it suffices to prove that for each iel, /x?(G?) 
= 1 where 

G i is as in (12.2). 

Proof. On G i any convergent sub-sequence of {^i(dsn+i\sn)}^i converges to the 

set C|(0|(T|)). From the definition of the set W in (8.3), on W the measures /if(dsw + x \ sn) 
and ?ij(dsn+x \s?) become closer and closer to each other as n - oo for each i and ; 
in /. Hence it is easy to see that on Gin W, 

Pjids^W^CM) for alije/. (12.3) 

Hence on n?e/G?n w> (12-3)holds for each ' and/in L since c(0) = 
0.e/c?(0?)>we 

conclude that on 
f)?6/G?n^,/ii(dsB+1|s>,)-*C(0)for alije/. Hence C]ieIGinWis 

a subset of G. For (12.1) it therefore suffices to show that fi*(f]i lGtr\W) 
= 1. From 

Theorem 8.2, ?i*(W) 
= 1. Hence it remains only to show that )u*(G?) 

= 1 for each i 

in /. For this, from condition (GGH) it is easy to see that it suffices to show that 

fii(Gi) 
= 1 for each iel. // 

Step II: The separation argument. From now on fix an iel. Fix any x and y in 9ts~i'. 

Let xy denote their inner product. The vector x shall be called a rational vector if 

each of its coordinates is a rational number. Any probability over S_, is an element 

of 91s _i; it will be called a rational probability if it is a rational vector. Let 

Z = 
{1,2,...}, the set of all positive integers. Define for xgSR5"1 and feeZ, 

B(x, 1/fc) 
= the open ball with center x and radius 1/k; (12.4) 

93 = {B(x, l/fc)|xe?Si and x is rational and keZ}; (12.5) 

*,s{?e?s-|?-x?0}; (12.6) 

0 se 
{0x|xe9t5-' and x is rational}; (12.7) 

and define the cartesian product, 

J 5= 
{(x^^fc^xG?5-* and x is rational, Be93, <f> 0 and fceZ} (12.8) 

Note that the "index" set J is a countable set. 

Define P(xh sf) to be the set of all probability distributions of play of the other 

players against which the action sfeSi is a best response for the player i of type t?; i.e., 

P(Ti,sf)5E^_ie^(S_i)|sf Argmax?Mi(0?(T?),.,s_i)4_i(ds.i)} (12.9) 
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Recall that the set of probability measures is endowed with the weak topology. 

(Indeed, since here we assume that S is finite, this reduces to the usual topology on 

the unit simplex.) Further, expected utility is (weakly) continuous in probabilities. 
It is therefore easy to check that Pixhsf) is compact and convex. We therefore 

conclude from the separating hyperplane theorem that ifv-i$P(Ti9sf) then v_? and 

Pixhsf) can be "separated" by some vector x. More precisely, the following can 

easily be shown: 

Lemma 9.1.2. Fix any x^Ti, sfeSt and v^e^S-,). Suppose that v^P(xi9sf). 
Then there exists a (x, B, <j>, k)eJ such that v_?eJ?, P(t?, sf) ? </> and "x separates the 

sets B and $ by at least 1/fc"; i.e., 

b.x < - 
l//c < 0 < px for all beB and pe<?>. (12.10) 

(It should be easy to see that for lemma 9.1.2 we do not have to worry about the 

possibility that Pixhsf) is empty; (12.10) still holds in that case.) 
Recall that the set G, is defined in (12.2). In the following lemma we show that 

if (T,.s??)?Gf, then there are two sets, B and <j>, which can be separated in the sense 

of (12.10) such that following is true infinitely often: Beliefs not conditional upon 

types, Piids_in+i\sn,sin+l), lie in the set B, and beliefs conditional on types, 

Piids_in + 1\ sn, sin+!, xt), lie in <t>. 

Lemma 9.1.3. For //ra.e. (t, s00)^ the following is true: There exists a (x, B, <f>, k)eJ 
such that (12.10) holds and an sfeS? such that if we define 

and 

tf^{(^OeTxS*|sin+1=sf and Hids^f^jeB} 

then 

i. for infinitely many dates n, (t, s00) lies in the set Hn; and 

ii. x?eD. 

Remark 9.1.3': Let the sets D and Hn be as defined in Lemma 9.1.3 above. If 

ix', s,co)eHn then player i type x\ chooses the action s'in+ x 
= 

sf at date n + 1. Since pt 
is part of a BSP, player f s action is optimal (/ira.e.). Hence /if(ds _ in + x | s'n, s'in+x, x\)e 

Piix'i9 sf). If x\eD then Pf?, sf) g <f>. Hence /ira.e., 

/i?(ds_in+1|s,n,s;w+1,T;)e0 onHnn{xieD}. 

Lemma 9.1.3 therefore implies that for infinitely many dates beliefs conditional on 

types lie in the set <f>. 

Proof of Lemma 9.1.3. We begin with an immediate implication of the conditional 

Borel-Cantelli lemma. Fix any 5e? and sfeSt. For ease of exposition we define 

Vini'W^Piids.^^s^^sf). (12.11) 

Define the events H'n 
= 

{sin+l =sf} and H^ 
= 

{pini-\sf)eB}. Then Hn 
= 

H'nnHl. 
Let 

1{} 
denote the indicator function on an event { } (equal to one on the event and 

zero otherwise). The event /f?? is measurable with respect to the o--algebra generated 
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by {s*,sta+ !}. Using this fact for the third inequality below we obtain, 

X^lMi(tfjs")=L^^ 

-Lr= ii^w=is.iiw,^?^i -*> w. <1212> 

Since //? is measurable with respect to the a-algebra generated by s"+1, the 

(conditional) Borel-Cantelli lemma (see, e.g., Chow et al., 1971, p. 26) implies that 

on a set of sample paths with /??-probability one 

"whenever (12.12) is infinite the event Hn occurs for infinitely many w." 

The /i, probability one set of sample paths where the statement in quotes above 

holds may depend on B and sf. However since 93 and S, are both countable there 

exists a set of sample paths with /^-probability one where the statement in quotes 
holds for all Be93 and sf eS, simultaneously. 

Fix any (t,s??)#G|. Then there exists a subsequence of dates, {w(t)},* i and a 

measure ve&(S) such that pAds*)* i |s"(l))-* v as t- oo and v^C^t,)). v?C|(0j(tj)) 

implies that there exists an sfeS? such that v(sf)>0 and such that if we define 

v_, = v^^ds-ilSi 
= 

sf) then sf is not optimal for the player-type x? against v_?. In 

particular, v.^P^t^sf ). Given this sf and v_? we may use lemma 9.1.2 to obtain 
a (x, B, </>, k)eJ such that (12.10) holds, v_fe? and x?eD (where the set D is as defined 

in the statement of this lemma). In particular part (ii) of this lemma holds. 

Now, /ti(dslt(f)+1 |s"(f))-> v and v(sf) > 0 imply that for all t sufficiently large, 

ft({Jtaw+i =sf}|s"(0)> v(s?)/2>0 (12.13) 

and also that 

M^^D-v?-Is^sDeev., (12.14) 

Since v-i lies in the open ball B we conclude from (12.14) that for all t sufficiently 

large, fiiHit)(-\sf)eB. This fact and (12.13) imply that for all dates n(t) for t sufficiently 

large the expression in the summation in the right-hand-side of (12.12) will exceed 

v(sf)/2. Hence the summation in (12.12) is infinite. The discussion above on 

conditional Borel-Cantelli lemma then implies that part (i) of this lemma holds for 

jira.e.?t.O?G,. // 

Step III: In our next result we conclude that we may assign probability zero to the 

event that there is a type such that infinitely often beliefs conditional on that type 
lie in one set while beliefs not conditional on type lie in another set if those two sets 

can be separated in the sense of (12.10). We state this result in a general framework 

in the hope that it may be of independent interest. 

Lemma 9.1.4. Let (Q, 3, /?) be a probability space, with Q a complete and separable 
metric space, 3 its Borel subsets and // a probability measure over (?,3). Let 

{3n}*=1 be sequence of non-decreasing sub-a-fields of 3 with 3^ 
= 

K?=13w. Let 

{xn?n= i be a uniformly bounded sequence of real-valued random variables on (fl, 3) 
with x? measurable with respect to 3? for all n. Let i be a random variable on (ii, 3) 

taking values in a complete and separable metric space t. Let D be a (Borel 

measurable) subset of f. Let {//n}?=1 be a sequence of events such that for each n, 

Hn is measurable with respect to 3?. Let k> 0 be a constant. Suppose that /?-a.e. 
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the following is true: 

(a) ?[*?+! 13,,fl > 0 on the event Hmn?-\D); and 

(b) ElxH+i |3J < - 
1/fc on the event Hn. 

Then pi{?eD and HH occurs infinitely often}) 
= 0. 

Proof. Let lD = 
l{ieD) 

denote the indicator function on D (equal to one if ?eD and 

zero otherwise). We first show that /z-a.e., 

lim^ {?[l1>?[xll+1|3l(,a|3J-?[x(l+1|3J?[lI)|3J} 
= 

0/x-a.e. (12.15) 

Iterated use of the elementary properties of conditional expectations results in 

the following: 

?DBB[*.+,|3..ai3J 
= 

?[?[l0x.+1|3il,i]|3g??[lflx.+1|a(J 
= 

?[?D0x.+ 1|3.+1]|3U 
= 

?[x.+1?[li,|3.+1]|aU; 

and 

?[xll+1|3J?[ll)|3J 
= 

?[xn+1?[ll)|3J|3J (12.17) 
Define 

4i = 
*.+,(?[li,|3.+i]-?Di)|3.]) (12.18) 

From the martingale convergence theorem one may show that ?[1d|3b] converges 

/x-a.e. as n-+ oo (to ^DdIS?,]). Hence An-*0 as n->oo /i-a.e. This is turn implies 

(via another application of the martingale convergence theorem - 
see, e.g., Chung, 

1974, Theorem 9.4.8) that 

limB^00?[4l3B]=0 /i-a.e. (12.19) 

It is easy to see that ?[4J3J is equal to the right hand side of (12.16) minus the 

right hand side of (12.17). Since the expression in brackets in (12.15) is the left hand 

side of (12.16) minus the left hand side of (12.17), (12.19) implies (12.15). 
From conditions (a) and (b) of the hypothesis of this lemma, on Hn the first term 

in (12.15) is non-negative and the first part of the second term, is^+JS,,], is no 

greater than - 
1/fc. From the martingale convergence theorem the second part of 

the second term, ?[1d|3,J, converges to EDdIS?,]. (AH of the above statements 

are of course true /i-a.e.) Hence (12.15) implies that on the event where Hn occurs 

infinitely often, 

0 = 
limsup,^ {?[lD?[x?+1 |3.f ?||3J 

- 
E{xm+X |3J?[1D|3J} 

>il/k)EllD\3^>0. (12.20) 

Hence ?[1d|3oo] 
= 0 on the event where Hn infinitely often. This then implies the 

conclusion of the lemma by integrating over the set of sample paths where Hn occurs 

infinitely often. // 

Proof of Theorem 9.1. (cont'd). From Lemma 9.1.1 it suffices to show that for all iel. 

/i?({(t,50O)?G?}) 
= 0. (12.21) 

Fix an iel. From lemma 9.1.3 for /?ra.e. (t,500)^G?, there exists an element of / x S, 
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satisfying the conclusions (i)-(ii) of lemma 9.1.3. Hence to show (12.21) it suffices to 

show that the event where these conclusions hold has /??-probability zero. For this, 
since J x Si is countable, it suffices to show that for each fixed element of J x S? the 

event where these conclusions hold has /??-probability zero. 

So fix an element (x,B,<?>,k,sf)eJ x S? and suppose that (12.10) holds. Let the 

sets D and Hn be as in Lemma 9.1.3. We seek to show that 

/??( {t?eZ) and Hn occurs infinitely often} ) 
= 0. (12.22) 

Define xn + x = 
x(s _ ?n+x ) and 3? 

= 
o( {sn, sin+x} ) (i.e., the tr-algebra generated by the 

indicated variables). Then x? is 3w-measurable. From remark 9.1.3' and (12.10), on 

the event Hn n {t?eD}, 

El^+i&n^^vAds-in+A^Sin+uhYx^O for all T?eD. (12.23a) 

Further on H?, /x?(ds_??+ x \s'n, s'in+ x)eB so (12.10) implies that 

?[xn+1|3j5=/i?(d5.?n+1|sw,5?n+1)-x< 
- 

1/fc. (12.23b) 

Lemma 9.1.4 then implies (12.22). // 

Proof of Theorem 9.6. Fix any probability \i over T x S00. Let <? denote the class 

of closed intervals in [0,1] with rational end-points. Note that the class if is 

countable. Then we have the following claim: 

Claim: For each (t,s??), excluding possibly a set with zero //-probability, the 

following is true: For all Ae5? and s*eS, if we define zn_ x 
= 

l{M({Sri=$*}|s?- ^au then 
on the event where Z*= izn-1 

= ??> 

Limw-.L*-ilh.-*Wi:-iZ.-iSA. (12.24) 

Proof of Claim: Fix any /xe^(T x S00). Since 5? and S are both countable it suffices 

to prove that (12.24) holds /i-a.e. for a fixed Ae S? and s*eS; so fix any such A and 

s*. Let zn_ ! be as in the claim. Define yn = l{S?=s*}- Whenever zn_ x 
= 1, E(yn\sn~1) 

= 

n({sn 
= 

s*}\sn~1)eA so E(yn\sn~1)-zn-1eA. Therefore, on the event where 

Lim^-Er-^Cj'J^-n^-i/Sr-i^-ieA (12.25) 

Define ?? 
= 

);? ?/s^Js"-1) where the expectation is taken with respect to the 

conditional probability n(-\sn~1). Then ?Kn|sw"1] 
= 0 and |^|<1. Using the 

Martingale Convergence Theorem and Kronecker's lemma it is easy to show the 

following (see Taylor, 1974): On the event where Z^?= iz?-1 
= ??> 

lAnN-.Z?-.*.-Wl?-i*.-i =0 (12.26) 

(The Taylor (1974) argument uses independence of ?n but this is not required. Indeed, 
define MN 

= 
?*= l[zn_l{?/S??izt-1] whenever the denominator is non-zero (and 

set Mjv 
= 0 otherwise). Since ?[?n|sn-1] 

= 0, {MJV}^)=1 is a Martingale sequence 
with respect to information generated by the partial history of actions. Since | ?n \ < 1, 

EIM2N1 ^ ??"=izn- i/(Z7-12?-1)2-0ne maythen proceed just as in Taylor (1974): 
Lemma 1 of Taylor (1974) implies that ?Af?<2; the Martingale convergence 
theorem implies MN converges; Kronecker's lemma then implies (12.26).) 

From (12.25) and (12.26) we may conclude that (12.24) holds. // 
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Proof of Theorem 9.6 (Cont'd): Part (b) of the Theorem is the same as the claim 

above. To prove part (a) of the Theorem we proceed as follows. Fix any sample path 
and let v as in part (a) of the Theorem. Fix any s* in the support of v. Let {Ak}?m x 
be a sequence of intervals in S? monotonically decreasing to the point v({s*}). Fix 

any integer k. If pi{sH+1 =s*}|5n) converges to v({s*}) then pi{sn^.1 =s*}\s")eAk 
for all n sufficiently large. In particular, if zH is defined as in the claim above but with 

A = 
Ak, then zn?\ for all n sufficiently large. Hence, the claim implies that for each 

k9 \?T?N_a0^=?l{Sn=^)/NeAk. Taking limits as fc-^oo then proves part (a) of the 

Theorem. // 
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