Savage—Bayesian Models of Economics
Nicholas M. Kiefer and Yaw Nyarko

1 Introduction

The “state of the art” in learning models in economics is highly unsettled. On
the one hand, we have the optimizing models in which leaming occurs as a
byproduct of maximizing expected utillty under uncertainty. This includes the
work of Rothschild (1974) and Prescott (1972) among the earlier papers and more
recently McLennan (1984), Mirman et al., (1984), Easley and Kiefer (1989), and
Kiefer and Nyarko (1989), and many others. Since these models have as their
motivation expected utility maximization, which in turn follows from the axioms
of Savage and implies Bayesian updating behavior, we shall refer to them as
Savage—Bayesian models. On the other hand, we have a large number of models
in which agents follow various ad hoc learning rules. These are often easier to
analyze (under the specific assumptions made) and are sometimes advertised as
being more realistic as well. We shall call these “ad hoc” models since there is no
appeal to a universal principle in their construction.

In this chapter we first review the foundational questions bearing on the choice
of approach. This turns out to be easy since the debate has in all essential features
been seen before in economics. We shall be considering primarily the foundational
issues relevant to economic questions. Indeed, the debates between Bayesian and
non-Bayesian appoaches in statistics have a long history. Lindley (1972) gives a
very nice exposition of some of the issues in this debate of primary interest to
statisticians.

In section 2 we review the axioms and the basic argument for the use of
Savage—Bayesian models in economics. We illustrate this in section 3 with a simple
economic model, that of a monopolist with incomplete information about some
key parameters of the stochastic demand curve it faces. Section 4 discusses some
common objections to the Savage-Bayesian approach: that it requires agents to
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form very complicated models, that it breaks down on “probability 0™ events, and
that it ignores the information and computation processing limitations of agents.

Section 5 discusses whether, in the context of an economic model with
heterogeneous agents, Bayesian or non-Bayesians make more money. Section 6
addresses whether Bayesian or non-Bayesian are better at “learning.” The answer
to both questions is “it depends.” The last section is made up of miscellaneous
comments and concluding remarks comparing the Savage~Bayesian models with
other models used in the economics literature today.

2 The Axiomatic Foundations and Expected Utility Maximization

2.1 The basic argument

One rarely sees an economic theory article in which a static behavioral model
is analyzed without some notion of optimization. Indeed, one of the principles of
economic theory is that static behavioral models should involve optimization. This
was not always the case, as the famous Lester—Machlup debate on the usefulness of
marginal utility theory illustrate most sharply. Machlup’s view prevailed. Lester's
objection that marginal utility theory was fanciful, difficult, and did not realistically
model the behavior of agents has been dismissed and would now invite ridicule.

The modern theory of choice under uncertainty, the expected utility approach,
similarly has widespread acceptance in economics and statistics. The axiom
systems that can be used to produce a utility representation of preferences
are quite compelling and widely accepted. The axioms that produce subjective
probability distributions over events are nearly as compelling and also widely
accepted. The key reference is of course Savage (1954). DeGroot (1970) provides
an insightful textbook discussion of the construction of utility functions and
probability distributions, giving an alternative but related set of axioms, and Pratt
et al. (1964) provide a simple but completely rigorous axiomatic system leading
to expected utility maximizing behavior in the finite case.

Early objections to expected utility theory — that it is too difficult or too
unrealistic to have any hope of being useful as a behavioral model — have
disappeared. Modern refinements, e.g. by Machina and Schmeidler (1992),
modify the theory in increasingly technical directions. Now, it is possible for the
contribution of this highly technical work 10 be regarded as making the theory
more realistic.

The position we advocate is simply that in modelling economic agents we must
first and foremost realize that such agents seek to choose a “best” or “optimal”
action. Depending on the context this would be profit maximization or utility
or preference maximization. Learning is not a goal or objective in its own right.
Learning only occurs as a byproduct, reflecting the informational constraints faced
by agents.
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2.2 The axioms

The following is taken from Savage (1954). This is only a summary and we
encourage the reader to consult Savage (1954) for a very enjoyable exposition.
A state s is a complete description of all items over which there is uncertainty.
The world or universe is the set of all states, S. An event is a collection of states.
The true state is the state which pertains. There is a set of consequences, C. One
should think of this as the set of all “final consumptions.” An act f is a mapping
from the set of states into the set of consequences, f: § — C. In particular, an
act specifies the consequence in each state. Let A denote the set of all acts.
Agents have preferences, <, over acts. The strict preference < is defined in

the usual manner: f < gif f < g butnot g < f. The axioms placed on the
preferences are as follows,

Pl f is complete (forall fand g € A either f < g or g < f) and transitive
(forall f,g.h € A, f <gandg < himplies f < h).

P2 < obeys the sure-thing principle. That is, let f, f’, g, and g’ be acts and let
B be a subset of S such that

1 on ~ B (the complement of B in §), f = g and f' = g’;
20nB, f=fand g = g’;and
3f=<s

Then f' < g’. (In words: Suppose acts g and f agree outside of the set B,
and g is (weakly) preferred to f. Modify f and g outside of B but ensure that
they are still the same outside of B, and maintain their values on B. Then the
modified g is (weakly) preferred to the modified f.)

We say the act g is weakly preferred to the act f given the event B if, when g and
f are modified outside of B so that they are the same outside of 8, then the modified
g is weakly preferred to the modified f, regardless of how the modification outside
of B is done. Under the sure-thing principle the manner of modification outside of
B is irrelevant. An event B is said to be a null event if, forall acts fand g, f < g
given B.

P3 Let f and g be constant acts (i.e. independent of s) and let B be an event
which is not null. Then f < g given B if and only if f < g.

P4 Let f, f', g, and g’ be constant acts such that f' < f and g’ < g (so that we
may think of f and g as “good” constant acts and f” and g as bad constant
acts). Let A and B be any two events. Define the act (f) to be equal to f
on A and f’ outside of A, and define g4 to be g on A and g’ outside of A.
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Define fg and gp analogously with B replacing A. Then f4 < fg implies

8A = 8B.
P5 There exists a pair of consequences or constant acts f and f’such that f* < f.

P6 A continuity axiom: Let g and h be two acts with ¢ < h and let f be any
consequence (or constant act). Then there exists a partition of § such that if g
or /1 is modified to become g’ and 4’ with the modification only taking place
on one element of the partition and is equal to f there with the other values
being unchanged, then g’ < h’. (This condition requires that the agent has a
randomizing device, e.g. the toss of a coin; the agent is required to be able to
distinguish consequences contingent on say 10 “heads” as opposed to on 11
“heads.”)

" P7 Let f and g be any two acts and let B be an event. Let g(s) denote the constant
act equal to the consequence g(s) regardless of the state. Then f < g(s) given
Bforalls € B implies f < g given B.

The result of Savage (1954) is as follows.

Theorem (Savage) If < obeys P1-P7, there exists a (unlity) functionu: C —
R and a (prior) probability measure P over S such that, for all acts f and g,

f < g ifandonly if f uLF(5)]P(ds) < f Wg®IPAs)  @1)

2.3 The Savage axioms imply Bayesian updating

Let u and P be the utility function and prior probability obtained from the axioms
of Savage as explained above. Let P(. | B) denote the probability P conditional
on event B. Then an immediate corollary of the main existence result of (2.1) is
the following. Let B be any event with P(B) = 0; then

f =g given B if and only if fu(f'}P(ds | B) Efu(g}P(ds | B) (2.2)

We may interpret the preferences *“< given B” to be the preferences an agent
has given knowledge that the event B has occurred. The right-hand side of (2.2)
requires the agent to evaluate acts by expected utility but using the conditional
probability of the prior given knowledge of B. In particular, conditional on B
the agent behaves as if it “updates” its prior by Bayes’s rule (i.e. the conditional
probability) and then proceeds to maximize expected utility with respect to the
updated prior (which is the posterior distribution).
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2.4 Where do the priors come from?

This question is widely raised as a criticism of the Bayesian approach. Answer:
The priors come from the same place the utility function comes from! Note that
from the axioms above we obtained the prior and utility function simultaneously
given the preferences. Indeed, what is a prior anyway? We use prior probabilities
to represent agents’ beliefs about the relative likelihoods of the various states. But
what are beliefs?

In particular, let E be the event

E = {the next president of the USA will be a Democrat)

What is the meaning of the statement “an agent assigns probability 0.2 to the
event E above™? We have chosen the event so that it does not allow a frequentist
interpretation, i.e. one cannot interpret the above to mean that “in infinitely repeated
trials the fraction of next presidents of the USA being Democrats is 0.2." The
interpretation in our opinion necessarily has to do with preferences and the amounts
the individual is willing 1o bet for or against the occurrence of the event E.

Indeed, consider a bet which gives the agent $1 if the event E occurs and $0
otherwise. Suppose the agent announces that $M is the maximum amount it is
willing to pay to take part in the bet. If we suppose that we can approximate the
agent’s utility function of wealth by a linear function then we may set M equal to
the (subjective) expected winnings. In particular, M = 0.2. Hence the probability
an agent assigns on an event occurring is the maximum amount it is willing to bet
on that event. Beliefs are obtained from preferences over the associated bets!

One of the surprising observations is that some economists who are perfectly
comfortable with the use of utility functions in deterministic problems or problems
with objective risk are uncomfortable with the use of prior probabilities because
they are “arbitrary” Priors are merely as arbitrary as the utility functions
themselves.

We therefore disagree with the assertions often made that priors are very
different from utility functions and should somehow be treated differently. The
two are obtained simultaneously.

3 An Example: The Monopolist Problem
An example which has seen much use in the literature and which serves nicely to
illustrate the setting is that of a monopolist producing a good 10 meet a stochastic

demand with unknown mean function. Suppose at each date 7 a monopolist must
choose an output level g;. This results in a market clearing price

Pp=a—Bq +¢& (2.3)

e ——
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where &, }f:, is an independent and identically distributed process with zero mean
and finite variance. The monopolist does not know the parameters o and 8 of the
demand curve. The monopolist does not observe the shock process £,/ but knows
its distribution.

At date r the monopolist would have observed the date r history of prices and
outputs by = {(q1, p1), --- . (ge—1, pi—1)); the monopolist then chooses a date
t output level g,. This will result in a market-clearing price of p; via (2.3). Let
H, be the set of all date r partial histories. A policy is a collection of functions
m = {m; )72, such that, for each s, 7,: H, — R prescibes the date 1 output level as
a function ¢; = m,(h,) of the date r partial history.

We model the monopolist as a Savage-Bayesian. An act for the monopolist is
the choice of a policy 7. A consequence is a sample path of prices and outputs,
{g:. Pi}i2,- A state s is a parameter vector and sample path of shock terms,
s = ((a, B), {&};2)). It should be clear that the act 7 results in a consequence as
a function of the state. Indeed, we shall let f, (s) be the sample path of outputs and
prices {g;, p:};<, induced by the policy = when the parameter vector and sample
path of shock terms are those specified by the state s = ((a, 8), {&r};2)).

The monopolist has preferences over acts induced by preferences over the
consequences, {¢;, p}i-,: the monopolist could for example be maximizing a
discounted sum of period-by-period profits. Suppose those preferences obey the
axioms P1-P7 stated earlier. Then from the Savage theorem there will exist a prior
¢ over states and a utility function U({q;, p;}) over consequences such that the
monopolist’s preferences over acts, 7, may be determined by the expected utility,
f U [ fx(s)]d¢. In particular; the monopolist will seek a policy which solves the
problem max, [ U [ fr(s)]d¢.

Most of the literature on the monopolist problem studies the model where
the utility function takes the special additively separable form U{g;. p;}) =
3%, 8 (g1, p:), where r is the within-period profit or some function of profit.
Let us now assume this additively separable structure.

Recall that we assumed that the monopolist knows the distribution of shock
terms. Hence any prior probability distribution g over the parameter vector
(a, B) induces a prior probability, denoted by ¢,,, over the set of states s =
((a. B). & };";1) and vice versa. Recall also that f (s) denotes the sample path of
outputs and prices resulting from the policy 7 in the state s = ((a. B), {&/)72,).
A policy 7 and prior probability u over («, ) therefore results in an expected
utility Vi (u) = fU [fr(s)]de,. If we let E denote the expectations operator
over sample paths of outputs and prices, fy(s), induced by the measure ¢,,, then
under the additively separable structure

oo
Vi) =E 23'“'r(q;. pPr) 2.4)

r=1
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The preferences of the monopolist with initial prior ¢ can then equivalently be
represented by V; (1), and the monopolist's problem is the optimization problem

supx Ve (1) = V(u) (2.5)

The function V in (2.5) is the value function. (In the literature the measure z over
© is what is typically referred to as the prior, and not ¢,,.)

Let ¢, [-|(g. p)] denote the probability ¢, conditional on the observation at
date | of prices p; = p from output choice g, = g. Define B(p, ¢, ) =
marge ¢u[-|(p. ¢)] as the marginal distribution of ¢, [-|(g, p)] on the parameter
space @. B(p, g, u) is the monopolist's posterior distribution over the parameter
space after observing a price p from output level ¢ and updating the initial prior
- It represents the Bayesian updating rule to obtain the conditional probability
of € given observation (p, g). (Of course, from the discussion of section 2.3
this additive separable structure is nor necessary for Bayesian updating; the latter
follows from the axioms of Savage (1954).)

Using standard dynamic programming arguments we may show that

Vip) = max {Er(q, p) +SEV[B(q. p, 1)1} (2.6)

where p = o — g + £ and E is the expectations operator over p = « — g + &
induced by letting (¢, 8) have distribution p and £ its known distribution. With
the above equation we see immediately the rrade-off the monopolist faces; the
choice of an optimal output level must trade current period return (the first term in
(2.6)) against the expected future information value of that choice of output level
(the second term in (2.6)). Note that “learning” is in no way treated as an objective
of the agent. It is a byproduct of the infinite horizon expected utility maximization.

We will return to this example to illustrate a number of points below. Here we
stress that the axioms leading to Savage-Bayesian behavior need no modification
to apply to this dynamic case. The economist who finds these compelling in the
static case need make no further assumptions to deal equally satisfactorily with
dynamic models. We note in section 6 some of the literature on this “monopolist”
problem.

4 Mis-specification, Probability 0 Sets, and Information Constraints
This section will address three common but unfounded complaints about the use
of the Savage—Bayesian paradigm in economics.

A Agents form simple models. The world is so complicated that agents cannot
conceive of the real world, and do not consider it a possibility.
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B Bayesian updating breaks down if it is possible for probability 0 events to be
observed.

C The information and calculation requirements of the Savage-Bayesian ap-
proach are so strong that the model is too unrealistic to be useful.

4.1 Agents form simple models

Objection A reflects a serious confusion and misunderstanding of the role of
models. Models are not reality, and a model is not necessarily to be rejected because
there is some aspect of reality not captured by the model. Dreze (1972) makes the
point nicely in his Presidential Address to the Econometric Society. He argues
that models play the same role in decision theory as in fashion, 1.e. they provide a
framework for experimenting with new ideas, and they provide a frame for showing
off one’s work to its best advantage.

Consider flipping a coin to observe whether it is “heads” or “tails.” Suppose one
uses a prior probability model that heads or tails occur with probability of % each.
Is this how the toss of a coin “really” occurs? Of course not! The toss depends
upon such things as the force and direction in which it is tossed, the wind pressure
and velocity, etc. “Reality” would require a knowledge of all these variables, and
a respectable knowledge of the laws of physics. This would enable us to predict
accurately the outcome of the toss of the coin. Since we lack such knowledge,
we require a model. The probability model has become an almost universally
unchallenged model of the outcome of the 10ss of a coin. Is it a realistic model?
We leave that to the reader to judge!

Now, there is a Savage—Bayesian way of modeling agents who for some reason
or the other entertain beliefs which do not include the “truth.” We now study some
examples, and we shall indicate that this is very much related to the issue to be
discussed under objection B.

Consider the monopolist problem above. There we suppose that the monopolist
has a prior belief over the vector & = (a, ) € R? representing the unknown
intercept and slope of the demand curve. Suppose that the monopolist has prior
beliefs 1o over 6 with support in some set S (say § = (0, 1) x (0, 1)). Suppose
that the “true” value of the parameter is some 6* in R? which does not lie in S
(e.g. 6* = (2, 2)). Such a model has been studied by Nyarko (1991a) and in the
language of that paper the agent (monopolist} is said to have a mis-specified model.

To further embellish this example suppose instead that the demand curve in the
monopolist example is given by p; = ¢ —Bq, +I'G (¢;. z;)+ &, where G(q;, ;)
may be some “complicated” and perhaps nonlinear function of output ¢, and some
other variable z;. Suppose that the monopolist does not entertain for whatever
reason the possibility of G influencing the demand. This is of course equivalent
to saying that the agent has beliefs over the tuple (o, 8. I') with support in some
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subset of B2 x {0} while the true vector may be some (a*, g%, I'*) with I'*
non-zero. Again such an agent has a mis-specified model.

Are such priors inconsistent with the Savage—Bayesian approach? The answer
of course is no. Recall that we argued in section 2 that priors and utility functions
are obtained from agents having preferences over lotteries. If agents never make
bets in favor of some event E occurring, regardless of the odds, then such an agent
assigns prior probability 0 to event E. In the language of Savage (1954), the agent
considers such events to be null. An outside observer may know that the event E
will occur and so can conclude that the agent has a mis-specified model. However,
as long as the agent’s preferences over lotteries obey the axioms of Savage, that
agent will necessarily have a prior and utility function and maximize expected
utility. Mis-specified models in this sense are not ruled out by the Savage axioms.

4.2 Bayes's rule breaks down with probability O observations

The discussion of mis-specified models above leads us naturally to objection B.
What happens in a Savage—Bayesian model when an agent observes data which
were assigned prior probability 07 This is a distinct possibility when the agent’s
prior probability is mis-specified.

Indeed, consider the monopolist example, and suppose that the slope term is
B = 1 and the monopolist knows this. Suppose that the monopolist’s prior beliefs
over the intercept term « are uniform on [2, 3], but the true intercept term is
a* = 10, so that the monopolist has a mis-specified model. Let the error term &
be uniformly distributed on [—1, 1].

Suppose that at date 1 the agent chooses the output level ¢ = 1. Then under
the monopolist’s prior beliefs the monopolist expects to observe prices anywhere
in the set given below (and excuse the obvious abuse of notation):

p=a—fBg+e¢e liesintheset [2. 3] — (1)(1)+ [~=1, 1]= [0, 3]

However, the true prices are governed by the true intercept value «* = 10. The
true observed prices will therefore lie in the set 10 — (1)(1) +[—1, 1] = [8, 10].
Hence the monopolist is sure to observe data that are assigned prior probability 0.

Does this model contradict the Savage—Bayesian paradigms? Let us introduce
some detail to make our point. Let 6 be a set of unknown parameters and let Z
denote the set of possible observations of this agent. Let P denote the agent’s prior
beliefs over the product space §2 = @ x Z. The agent’s posterior distribution
given the observation of the data z is then the conditional probability P(- | z).
(Note that what is typically called the prior is actually marge P, the marginal of
P on @; and what is typically called the posterior is margg P(- | Z).)

The question we seek to answer is then the following: is P(. | z) well defined
for all z in Z, and in particular is it defined for z values which may be assigned a
prior (i.e. P) probability of zero?
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Well, what is a conditional probability P(. | z)? It is a function mapping
observed values of z into the set possible of probability measures on @ x Z and
should satisfy the following conditions.

(a) Itis a function of z (or more formally, for any subset S of @ x Z, P(S | 2)
should be a random variable measurable with respect to o ({z}), the o-field
generated by z).

(b) Itintegrates properly (i.e. {, P(S | z)dP = P(S) for each subset S of @ x Z).

Observe therefore that a conditional probability is unique only up to probability
0 sets. In particular, let P(. | z) be a conditional probability and define P'(. | z)
such that, for each z in Z, P'(. | z) is a probability measure on @ x Z
satisfying (a) and such that P({z in Z : P(. | z) = P'(. | 2h) = L
Then P’(. | z) is also a conditional probability. In particular we are free
to change arbitrarily P(. | z) on a set of z values with P probability 0.
P(. | z) and P(. | z) are referred to as different versions of the conditional
probability. When describing agents who are using possibly mis-specified models
not only must we state their priors (in addition to utility functions, discount
factor and other primitives) but we must also fix a version of the conditional
probability which will provide us with a conditional probability even on probability
0 events.

Let us now turn to the monopolist example with mis-specified model. Recall
that the monopolist expects observed price to lie in the nterval [0, 3]. However,
the prices will always lie in the interval [8, 10]. So what does the monopolist do
when a price, in [8, 10], is observed?

As argued above we must fix a version of the monopolist's prior beliefs. We
illustrate the range of possibilities with two examples.

1 Whenever prices outside of [0, 3] are observed the monopolist’s beliefs about
o are represented by some distribution, say normal, with support on all of the
real line. This of course implies that the monopolist’s beliefs about the set
of possible prices have support on all of the real line. Hence any subsequent
possible price will be entertained as a possibility.

2  Whenever prices outside of [0, 3] are observed the monopolist ignores the
data. The monopolist’s posterior distribution given any such observation will
then be the same as the prior distribution. The two different versions will
of course in general lead to different evolution of beliefs and hence actions
over time. Indeed, the monopolist that reverts to the normal distribution prior
when faced with “strange” data will over time “learn” the true value of «. The
monopolist who throws away the data will of course throw away the data in
each period and will never “learn” anything; its beliefs stay the same at each
date.
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The stark difference between these possibilities masks the fact that whenever
we do Bayesian updating we typically have a version in mind. For example suppose
we have a prior over a parameter £ which is N(0, 1), i.e. normally distributed with
mean 0 and variance 1. Suppose we observe the data z = 6 + &, with € independent
of & with distribution N(0, 1). The Bayes’s rule type of formula is then applied to
show that the posterior distribution on & conditional on any observation is N(z/2,
1/2), the normal distribution with mean z/2 and variance 1/2. This is assumed to
be true for all z. This of course fixes a version.

To see this, note that we could have defined the posterior distribution on 6
as N(z/2, 1/2) for all z values which are irrational numbers and N(0O, 1), or any
arbitrary distribution, for all z values which are rational numbers. This is another
version of the conditional probability. Why is this any better or worse than the
previous one?

One may be tempted to argue that the difference between these two possibilities
in our normal updating example are irrelevant since an “outside observer” would
conclude ex anre (i.e. before the realizations) that the two versions will be
the same (with probability 1). However, this appeals to a special arbitrarily
defined “outside observer.” If instead we choose an outside observer who knows
the true values of 6 and £ and knows that z will be a rational number then
that observer will conclude that the versions will differ with probability 1!
When we use the formula N(z/2, 1/2) for all z as the posterior distribution
we are stating our preference for that particular version of the conditional
probability.

Some restriction on the set of possible versions is possible, and in the context
of our monopolist example may indeed be useful. Suppose an event occurs
which was assigned prior probability 0. If we have fixed a version of the prior
probability the conditional probability will be defined even on this event. One
may then wish to require the conditional probability to assign probability 1 to
the event upon which it has been conditioned. This requirement on the version
leads to the concept of a proper conditional probability, as in Blackwell and
Dubins (1975).

In many cases the requirement of properness will result in a significant reduction
in the set of possible versions. For example consider the monopolist problem
above where the monopolist has a mis-specified model. Let us suppose that the
mis-specification is only in the monopolist’s beliefs about the parameter ¢ and
not in the distribution of the data, given 6. Suppose the monopolist observes
the data (prices) p*. Let us require the monopolist to have a proper version of
the conditional probability. Then the monopolist’s conditional probability must
assign probability | to the set of & values which could possibly generate p*. In
the monopolist example no & in the support of the monopolist’s prior (the set of
a in [2, 3]) will generate any observed p* (in the set [8, 10]). Hence properness
implies that the monopolist cannot have a posterior distribution with support in the
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set {«r in [2, 3]}. In particular the monopolist cannot have a posterior distribution
which is equal to its prior and so cannot “throw away” the data.

The requirement of properness has been used in the recent game theory literature
(see, for example, Brandenburger and Dekel, 1987; Blume et al., 1991). However,
even when we require versions to be proper we are still left with many versions.
One may therefore object to the use of any one particular version of conditional
distribution (even when proper) because they are too ad hoc. One may ask: where
do the arbitrarily specified updating rules on the probability zero sets come from?
Our answer: Yes, as you may have predicted, they come from the same place
as the utility functions! The versions of the conditional distributions are just as
ad hoc as the prior distributions and the utility functions. Indeed, they should be
considered an integral part of the prior beliefs. When the model is being specified,
one typically states the prior probability and the utility function. We ask that the
prior probability should be stated with its associated version of the conditional
probabilities.

From Savage (1954), we know that an agent’s prior beliefs may be determined
by asking the agent to state preferences among different lotteries. It is assumed
the agent can do that. Similarly to obtain conditional probabilities on probability
0 events we ask the agent to choose among different lotteries — conditional on
these probability 0 events occurring. If we assume that agents can do this then
we arrive at a conditional probability on those events. (Of course there remains
some subtleties of interpretation of the Savage axioms in this case. This is further
discussed in forthcoming work. However, one should consult Blume et al. (1991)
for more on this.)

In summary we stress that the axioms of Savage do not exclude the possibility
of agents observing zero probability events. Since these are not thought to be
terribly relevant to statistics, they have not received much attention in the statistical
literature. Nevertheless they are of considerable interest in economic modeling
(and perhaps should receive more attention in statistics as well, as illustrated by
the “model revision” problem). One such economic model has been studied by
Nyarko (1991a).

4.3 Information processing and computational constraints

We turn now to objection C. We first note that this is related to objection A, and
hence some resolution to objection C may be obtained by simply supposing that
the agent's beliefs assign probability 1 to a set of “simple” models; we then proceed
as discussed in section 4.1 above.

However, objection C should really be interpreted as information processing
constraints involved in the use of Bayesian modeling. This objection to Bayesian
methods also has a history. Good (1983) suggests the concept of type Il rationality.
Type II rational Bayesians maximize expected utility when costs of calculation
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are taken into account. This straightforward idea has not generated adequate
development in economics. Our position is clear: information processing and
computational constraints should be modeled explicitly as part of the constraints
(Savage—Bayesian) that agents face when maximizing their expected utility.

Kiefer and Rao-Sahib (1991) have taken up the topic and looked at simple
models in which agents cannot process all the relevant data generated in the
economy. For example, data may be generated at the rate of K bits per minute
but the agent can absorb only K /2 bits per minute. These models use coding
theorems to bound expected losses relative to full information decisions. Another
promising but largely unexplored approach is to approximate arbitrary posterior
distributions by, for example, orthogonal polynomials and just keep finitely many
terms, thus reducing the dimension of the state space. This is relevant in important
practical cases.

Our point is that our agents may well be constrained in processing information
or in computations. These constraints should be incorporated into the model. They
will result in a restriction on the set of feasible acts that can be chosen by the
Savage—Bayesian agent. Incorporating constraints into optimization problems is
an exercise in which economists are well trained. It is surprising that so little work
has been done on information processing and computation constraints.

5 Do Bayesians Make More Money Than Non-Bayesians?

(We have no information about the salaries of economists so we cannot answer
the question about Bayesian versus non-Bayesian economists!) What we are
concerned with here is the question of whether Bayesian agents make more money
than non-Bayesian agents in economic models where both exist. The general
answer is “maybe”; we illustrate below why a sharper general answer cannot
be expected. We then turn to an example in which a single Savage—Bayesian agent
amidst many non-Bayesians makes more money.

5.1 It depends upon the prior and the truth

For simplicity suppose that the common goal is to make money, i.e. bets are small
or utility is linear. Even here, the question is not focused sharply enough to admit
a clear answer. For example, suppose the Bayesian is betting “heads” at even odds
on coin flips, and is certain that the coin falls “heads™ with probability 0.9. The
Bayesian will expect to make money. However, if we take the Bayesian’s strategy
as given and evaluate the winnings under that strategy and with the knowledge that
the coin actually falls “heads” with probability 0.3 say, we see that the Bayesian will
lose money (and breaks even if the coin is fair). A non-Bayesian who always bets
on “tails” (perhaps because it is July) will make money, thus beating the Bayesian.
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This exalnple lllustrates the dlfﬁcully in reaching-any firm result on who ‘makes
more money. Of course, given commen information, the Savage—Bayesmn expects -
to make at leasl as much money as anyone else. However, this is an expectation
with respect to the Savage—Bayesian’s prior beliefs. Argumems very similar to the
above have been made by Blume and Easley (1992) in'a model of trading in a
financial market

5.2 Exémple where Bayesians win (against OLS agenté) )

One easy way to make Savage-Bayesian agents make more ‘money is via the
interpretation that such agents take into account much more information, and in
particular take into account the way other agents are behaving. This is an oftenheard
interpretation of the definition of a Bayesian agent in the economics literature. This
is of course not necessarily our definition, which is one which follows only from
the axioms of Savage (1954). However, we shall study the implication of such an
interpretation via the following example.

Consider the following model of the interaction of a large number of competitive
firm. Suppose there is a continuum of firms indexed by the set I = [0, 1]. Each
agent (i.e. firm) i in I must choose an output level x;; at each date 1. Define x; to be
the average output level of the agents at date 1; i.e x; = [ xj;di. The equilibrium
price of the good depends upon the aggregate output and is obtained via a linear
demand curve p; = a — Bx; + ¢, where («, f) are constants known to each agent.
{e1};2, is the shock process and is an unobserved independent and identically
distributed process with zero mean and finite variance, with a distribution known
to all agents.

If each agent has a cost function ¢ (x;;) = x”, the expected profits of each agent
will be x;, E; p; — 0. Sx +/2, where E; p, is the expectation operator of agent i. The
profit-maximizing output can then be easily shown to be xj; = E;p,;. When agenls
are choosing their date r actions, they know the history of past prices { pr} bul
they do know what the date ¢ price will be. Let us suppose that that agents do not
observe the past aggregate output levels,

Suppose that each agent i in [ predicts the end of period price to be the average
of all previous prices:

ols Z

2.7)

We ‘shall call such agents OLS agents since their predicted price is that which
would be predicted by the ordinary least squares algorithm.

Each such agent will then choose an output level equal to xj; = p®. This results
in an end of date 1 price p, = a — Bp" + &,. Define P = Ep, = a — Bp™ tobe
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the expected price in the economy with OLS agents. The expected profit of each
such agent will then be

2
EJT,-O]S =E [PfX:'t = 0-5"5!'2!] = p:p?]s =93 (p:’[’) Y

Now suppose that there is one agent, a “Bayesian,” who is by definition one
that knows that other agents are choosing actions via the OLS learning rule but is
otherwise the same as all other agents in the economy. Suppose that that agent is
so small that it does not affect the prices. Then such an agent will know that the
end of period expected price will be p and will choose an output level x; = p;
resulting in a profit of

Ex} = Epip; —05(p})" = 0.5(p})’ @9

It is therefore very easy to see from (2.8) and (2.9) that

E (ﬂ: R Ilr:,ns) =05 (p;- = p;"S)Z =0.5 [a —(1+ ﬁ)p?‘*]z (2.10)

In particular, the following observations are clear. First, at each date the Bayesian
will be making profits no less than that of the OLS agent. This profit is strictly
positive as long as the OLS estimate is different from the rational expectations
value /(1 + B8). When the noise term ¢, is nondegenerate this will in general be
the case at each date.

The profits will of course tend to zero in the limit if the OLS estimate converges
to the rational expectations level a/(1+ ). One can actually show thatif 1+ > 0
and the first moment of the error term is finite then indeed the OLS prices converge
to a/(1 + B). It is easy to show, however, that when any of these two hypotheses
are violated we may indeed obtain situations where the OLS estimator does not
converge to a/(1 + B) and so the Bayesian agent makes strictly more profits than
the OLS agent even in the limit. In summary we have the following:

Proposition 1 (Bayesian is infinitely richer inﬁnitely often)

(i) The Bayesian cannot make less money than the OLS agent, i.e. 1 > p°
for each 1.

(ii) Ifeither(a) 1+ < 0, & = 0forall s, and the initial price pg > a/(1+ B);
or (b) the shock distribution has fat tails, i.e. E(| ¢ |) = oo (e.g. a Cauchy
distribution), then lim sup;—, o E (7} — 1) = +00.

Remarks We could also consider a model where there are many Bayesian
agents interacting with many OLS agents. Those Bayesians agents will then
have to make predictions about how other Bayesians are behaving. This results
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in an infinite hierarchy of beliefs about beliefs about beliefs, etc. For more on
this problem see Nyarko (1990, 1991c).

6 On the Question of Learning in the Limit
6.1 It depends on the prior and induced sample path

As argued earlier, this is an inappropriate question in economics since it is not
the objective of agents to “learn.” Agents seek to choose the best actions given
their informational constraints. Recall in the monopolist problem the choice of an
optimal action involved a trade-off between actions that yeild high current period
returns and which results in high future information. A monopolist may therefore
optimally decide to choose actions which do not reveal the true parameter values,

To illustrate this possibility suppose that in the monopolist problem there are
only two vectors of the unknown parameter, (o', 8') and (¢, 8”). This results in
two mean demand curves as, for example, in figure 2.1 with point of intersection
(4, p). If the monopolist chooses the action g, the monopolist will receive no
information on the unknown demand parameters since with that output level both
demand parameters yield the same distribution of prices. Suppose that ¢ maximizes
the current period expected profit. Any output level different from g results in a
loss in current period profits which may or may not be compensated for in the
future information value of that different output level. If the agent is risk averse
and the discount factor is low, it may indeed be possible that the future information
value never compensates for the loss in current period profit. In that case the action
g is optimal and the Bayesian agent does no learning over time.

The potential for non-learning has been shown for low discount factors under
differentiability assumptions by Kiefer and Nyarko (1989); it has been shown in
numerical simulations by Kiefer (1989). This question has also been studied under
genericity conditions by McLennan (1987) and under normality assumptions by
Feldman and McLennan (1989).

The monopolist problem with actions which are possibly vector-valued and
where other exogenous variables may be present has been studied by Nyarko
(1991b). Huffman and Kiefer (1990) and El-Gamal and Sundaram (1989) study
a variant of the monopolist problem (and, in particular, optimal growth) where
capital is an additional state variable. Nyarko and Olson (1991) study the optimal
growth model where the unknown parameter is not a fixed parameter ¢ but an
endogenously moving quantity (the stock of resources). The conclusions from
all the above variants of the monopolist problem remain the same as before: the
answer to the question of whether the Savage—Bayesian agent learns the unknown
parameters over time is ‘it depends.” The answer can be either yes or no depending
on the particular model, prior beliefs and utility function.
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5 6.2 - On the same sample path the Bayesians cannot be beaten

As we illustrated in the previous section a Savage—Bayesian agent need not learn
the unknown parameter vector in the limit. Other agents using different behavior
rules may therefore do better than the Savage—Bayesian agent when it comes to
learning. Indeed, consider the monopolist example outlined above where figure
2.1 applies. Consider a non-Bayesian agent who chooses the action ¢ + e at even
dates and ¢ — e at odd dates where e > 0 is some “small” number. It can easily
be shown that such an agent will learn the unknown parameter vector over time.
(This is similar to the concept and discussion of g-equilibria in Easley and Kiefer
(1988).) Such an agent will therefore do better than the Savage-Bayesian agent
as far as learning is concerned. There should of course be nothing too surprising
about this. The objective of the Savage—Bayesian is not to learn, but to maximize
utility! Utility: maximization may lead to decisions and hence a sample path of
observations which do not maximize the ability to learn the unknown parameter.
However, if we fix the sample path of observations, the Savage-Bayesian agent
cannot be beaten when it comes to the question of learning. In particular if some
other agent is able to learn the unknown parameter vector then so will the Bayesian

i

i
|
- Q

Figure 2.1 Possibility of non-learning monopolist
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agent. More precisely, the following theorem can be proved. If an estimator can be
constructed which is consistent along a given sample path (e.g. if the OLS estimator
is consistent on some sample path), then the Bayesian posterior process (with
sufficiently diffuse priors) will converge to the point mass on the true parameter
along that sample path. In particular, along a given sample path as far as learning
is concerned Bayesian updating “cannot be beaten.”

The rest of this section will be devoted to formal statement and proof of this
assertion. Those uninterested in the details may wish to proceed to the next section.

Suppose there is some parameter 6 in a parameter space ©& which is unknown
to the agent. Let sy be the probability over ® representing the agent’s prior
beliefs. There is some observation process {Z;}72, taking values in the set Z
whose probability! law Py depends upon the parameter 6. Define 2 = @ x 2.
Any w € £ specifies a parameter value € (w) and a sample path of observations
{z:(@)};2 . We then define P to be probability measure over £2 induced by z0 and
Py; i.e. for any subset S of £2,

P(S) EfPe(S)duo (211

Let F; be the o-field generated by the data {z|, ..., z;}. Let Fo denote the
information generated by the entire sample path of observations {z;, z2, ... }. Fix
anyr =1,2,... ort = . JF; represents the information available at the end of
date 1. Let P(. | F;) denote the probability P conditional on the information in
F;. Let g denote the marginal distribution of P(. | F;) on the parameter space 6.
4, 1s the agent’s posterior distribution over # at the end of date 7.

Suppose the true parameter is 6. Let 14 be the probability measure on 6 which
assigns probability one to 8. The Bayesian agent learns the true parameter vector
in the limit if z¢; converges to 1y in some metric with Pg-probability 1. The metric
we shall use is that of the topology of weak convergence; in particular a sequence
of measures on 8, {1 }7° |, converges to the measure 4™ if, for all continuous and
bounded real-valued functions on 8, f f du™ converges to f f du®; we let wlim
denote the operation of taking limits of measure in the weak topology.

First we show that the Bayesian agent's posterior distribution will always
converge. It converges to the probability distribution 1> which is conditional
on the complete sample path of observations, Fuo. The conclusion of this result is
that the beliefs do not wander around but eventually settle down. Nothing is being
said at this stage about whether or not the limiting belief, jt~, is equal to 14 and
hence whether or not the Bayesian agent learns the true parameter vector.

Proposition 2 (Beliefsconverge) Foroalmostevery 8 € @, Py({wlimp_, o0 ft;
= leo}).

Let us now consider a “sophisticated” and not necessarily Bayesian econo-
metrician, At the end of date 1 the econometrician will have an estimate g, of the
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parameter 6. This must be a function of the data from date 1 to t (the econometrician
may be sophisticated but is not clairvoyant!). In the language of measure theory,
£, must be F;-measurable.

We define an estimator to be a sequence {g;};° | suchthat, forallz,g,: 2 — &
and is F; measurable for all 7. Suppose that the true parameter vector is €. Then
we say that the estimator is consistent if it converges to 8 on a set of sample paths
with Py-probability 1; i.e. if

P ("l_ip;og,=9)-;1 (2.12)

Given any sequence {g}{, of F;-measurable ©-valued functions, note that the
limit g = lim,_, o g if it exists is an F-measurable function. From proposition
3(i) below we may conclude that if the sophisticated econometrician can construct
a consistent estimator then necessarily the Bayesian agent will learn the value of
the parameter vector in the limit.

Indeed, more is true, One can show that, on any sample path where the
sophisticated econometrician can construct an estimator which converges to the
true parameter, the Bayesian agent will necessarily learn the parameter vector on
the same sample path. The formal statement of this stronger assertion is proposition
3(ii) below.

Proposition 3 Let g be an Fo,-measurable &-valued function.

(i) Suppose that for o almost everywhere 8, Py({w € 2 | g(w) = 8}) = 1.
Then for x almost everywhere 8, Pop(wlim, o0 ftn = 15) = 1.

(i) Suppose there exists an Foo-measurable set B such that for pp almost
everywhere 8, Pp({w € £2|g(w) = 6)} N B) = Py(B). Then for u almost
everywhere 6, Po({wlim, .00 ptn = lg} N B) = Py(B).

7 Concluding Remarks

Many of the results available in the literature on ad hoc learning models are adapted
from results available from the study of stochastic approximation methods, or other
methods used to study the properties of numerical algorithms in computer science
and engineering. The pejorative that the results are often “mechanical” is thus
hard to avoid. Nevertheless, it is often the case that the ad hoc methods turn out to
be exactly or approximately Savage—Bayesian methods for some specification of
prior and utility. In these cases the results are useful, although strictly applicable of
course only in these particular cases and not in the generality sometimes claimed.
That is, an ad hoc method may have the implication for a class of models that
“learning occurs,” i.e. the ad hoc estimators are consistent. This is the “lucky

"
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learning” result which often seems to be the goal of investigation. However, it is
only when the ad hoc method coincides with a Savage—Bayesian approach that we
can conclude from this that “learning is optimal.”

We have discussed in section 4 some common but unfounded criticisms of
the Savage-Bayesian paradigm. The Savage-Bayesian model rests upon the
foundations of Savage axioms. Many may consider these axioms and their
implications too strong. Currently work is being done by Machina and others on
relaxing these axioms. We welcome these advances. The main conclusions of this
literature is that under some relaxed assumptions, instead of subjective expected
utility maximization where the probabilities enter the utility functional linearly,
we obtain the maximization of a utility functional where the probabilities enter
in some specific nonlinear way. We look forward to seeing applications of these
non-expected utility formulations in more applied problems.

Appendix
Proof of proposition 3

(i) To keep the exposition precise, in particular to indicate that the true parameter
can be considered a random variable (with distribution pq), we let 8(w) € © be
the projection of w € 2 = @ x Z* onto its @ coordinate. We also index the
posterior distributions y () by the sample path, w. For fixed 6 € ©, define Cy =
{w € 2| wlimy00 s = lgland C = {0 € 2 | wlimy o0 (@) = lgw}-
Recall that P = Py x pg. Then

P(C):fPe(Ca)duo (A1)
8

We proceed to show that P(C) = 1, which then completes the proof since
P(C) = 1 implies, using (A.1), that P»(Cg) = 1 for g almost every &, which is
proposition 3.

From proposition 2, Pg({w € £2 | wlim, 00 fir = ftoc}) = 1 for o almost
every 8. Hence P({w € £2 | wlimpo i(®) = poo(®)}) = 1. To show
that P(C) = 1, it therefore suffices to show that poo(@) = lg(w), P almost
everywhere. However, from the definition of g, Ps({w € 2| g(w) = 8(w))) =1
for wg almost every 6. This in turn implies P({w € 2 | g(w) = 8(w))) = L.
So for any Borel set D in 8, if we let E denote expectations with respect to
P, poo(D) = E[’[GED] I fc:o] = E[I{geD} I-?:oo] = I[geD] (since g is
Foo-measurable) = 1(g ¢ p). Hence pioo (@) = 1g(w), almost everywhere.

(i1) The proof of part (ii) is very similar to that of part (i) with minor changes. The
complete proof may be found in Kiefer and Nyarko (1988, Lemma 5.4, p. 116).
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Proof of proposition 1
(a) The following formula is very easily verified:

ols
P =p" + “—%ﬁg}f—’* + 641 (A2)
- +1
Suppose that there is no noise term (or, equivalently, that &, = 0 almost everywhere
for all ¢). Suppose that we start the OLS process at some pg > a/(1+ 8). Then it
is easy to check that the date 1 price, p; = a — Bpg, exceeds pg. Now suppose that
P > a/(1 + B) for some t. Then (A.2) with £ = 0 and the fact that 1 + 8 < 0

implies that

o
1+ 8

Hence by induction (A.3) holds for all 1. In particular the sequence of OLS price
estimate are monotone increasing, and hence converge either to infinity or to a
finite limit.

Now, p; = a — Bp®. If the OLS estimate converge to a finite limit then the
prices must converge to a finite limit. The latter limit must necessarily be the same
as the limit of the OLS estimates since those estimates are averages of the prices.
But then p; = a — Bp?" implies that the common limit must equal a/(1 + 8).

In particular if the estimates converge to a finite limit those estimates as well
as the date 7 prices must converge to the rational expectations level a/(1 + B).
However, we just argued that p; > pg > a/(1 + B) for all 7 so the prices cannot
converge to & /(1 + 8). We therefore conclude that both the prices and the estimates
increase monotonically to 4+occ. This in turn implies that the difference between
the profits of the Bayesian and the OLS agent converges to plus infinity.

(A3)

ols ols
Pry1 > P>

(b) One can easily show that, for any fixed integer k > 0,

gP(rsflzkr) > E([%D—l (A4)

(see Chung, 1974, theorem 3.2.1). Since E(|e1]) = 00, we may conclude from
the Borel-Cantelli lemma that prob (|e;| > kr infinitely often) = 1. Since the
integer k is arbitrary this implies that

. Ep
lim sup;— oc |T| =00 ae. (A.5)

Ty - Now it is very easy to check that the following recursion formula holds:

. ols _ &% i o ols &
P = +(~——, )p, +[2] (A6)
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Fix any sample path. If limsupé,/t = oo then lim sup p, < oo results in a

contradiction to (A.6). If liminf &, /1 = —oo then liminf p{™ > o0 results in =
a contradiction to (A.6). Hence (A.5) implies that lim sup | p}’ |--= o0, almost : - : "=

everywhere. Equation (2.10) then proves proposition 1.

Notes

This paper was prepared for the Workshop on Leamning and Rationality in Games and
Economics, European University Institute, Florence, July 1991. We thank the participants
for helpful comments. The paper has benefited from seminar audiences at Cornell and Brown °
Universities. We thank the National Science Foundation for its assistance. The second author
is grateful to both the C.V. Starr Center and the Challenge Fund at New York University for
their generosity.

1 Some technical remarks: We assume the spaces @ and Z are complete and separable -
metric spaces. & x Z* is endowed with its product topology. Let B(£2) denote the sel
of Borel subsets of £2. The measure P is then a probability measure over the measure
space (£2, B(£2)).
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