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Summary. Consider an in®nitely repeated game where each player is char-
acterized by a ``type'' which may be unknown to the other players in the
game. Suppose further that each player's belief about others is independent
of that player's type. Impose an absolute continuity condition on the ex ante
beliefs of players (weaker than mutual absolute continuity). Then any limit
point of beliefs of players about the future of the game conditional on the
past lies in the set of Nash or Subjective equilibria.

Our assumption does not require common priors so is weaker than Jor-
dan (1991); however our conclusion is weaker, we obtain convergence to
subjective and not necessarily Nash equilibria. Our model is a generalization
of the Kalai and Lehrer (1993) model. Our assumption is weaker than theirs.
However, our conclusion is also weaker, and shows that limit points of
beliefs, and not actual play, are subjective equilibria.

JEL Classi®cation Numbers: C70, C73, D81, D82, D83, D84.

1 Introduction

1.1 Discussion of main ideas

Consider a ®nite collection of players in an in®nitely repeated game. Suppose
that each player is characterized by a ``type'' which is not necessarily known
to the other players of the game. Impose only two conditions on players.
First, suppose each player obeys the Savage (1954) axioms: In particular,
each player has a prior probability belief over the set of types of all the
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players as well as the actions over time each player-type will choose. Each
player then maximizes her expected utility for the in®nite horizon game given
that belief. Second, suppose that the beliefs of players are such that if one
player assigns probability zero to an event, then all other players assign
probability zero to that event. We show that under conditions slightly weaker
than these two, the beliefs of players converge to the set of Nash or subjective
equilibria.

The motivation of this paper is the same as that of Blume and Easley
(1984) much earlier: We seek to determine conditions under which players
initially not in equilibrium can ``learn'' their way to an equilibrium. The
results reported in this paper are in one sense a generalization of the results
of Jordan (1991 and 1995). Jordan studied the same model as presented here,
but assumed that players' priors are the same. We generalize the results of
Jordan by showing that the convergence still occurs when we weaken the
common prior assumption by requiring merely that players' ``uncommon''
priors are mutually absolutely continuous with respect to each other; i.e.,
they assign probability zero to the same events. (The condition we use, which
we refer to as condition (GGH), is weaker than this.) Without common
priors, however, when the discount factor is positive we obtain convergence
to subjective as opposed to Nash equilibria, so our conclusion, i.e., the
convergence result, is weaker than that of Jordan. Our condition (GGH) is
one of the weakest in the literature under which a convergence result is
possible. Without it we do not believe much can be said about the players'
limiting behavior. For an example of what could go wrong without (GGH)
see Nyarko (1991). Like Jordan (1991 and 1995) our results shall state that
beliefs of players converge to the set of Nash or subjective equilibria. The
actual play over time does not necessarily converge to the set of such equi-
libria. In Section 1.2 we provide an example to illustrate all this.

Kalai and Lehrer (1993a) (henceforth KL93) obtain results on the con-
vergence of actual play to the set of subjective equilibria under an absolute
continuity condition. In Section 4, we provide an analogue to the KL93
assumption, in the context of the model with many types, requiring their
assumption to hold ``for almost every'' vector of types. We refer to this
assumption as (KL). We show that condition (KL) is stronger than (GGH),
the condition we use in this paper. The example in Section 1.2 will satisfy
(GGH) but will fail (KL).

Like Jordan (1991 and 1995) we shall suppose that each player's belief
about the other players is independent of that player's own type. In Nyarko
(1994a) this assumption is relaxed and shows that without the type-inde-
pendence assumption, the limit points of beliefs are not necessarily Nash
equilibria; instead they are correlated equilibria. Nyarko (1994a) is one of the
few papers which gives a convergence to correlated equilibrium result.
However that paper applies only to the zero discount factor problems. It
remains an open question whether the correlated equilibrium result extends
to the positive discount factor problem. Indeed, it is not clear what the
appropriate concept of correlated equilibrium should be used for that
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problem. The main result of this paper, although it allows for positive dis-
count factors, is of little help in directly extending that paper1.

The Nyarko (1994a) paper has a second result: the convergence of sample
path averages of true play (i.e., the empirical distributions) have the same
limit points as beliefs. When combined with the main result of this paper, we
obtain a link between the convergence of beliefs result here and the con-
vergence of empirical distributions. Jordan (1996) has also independently
obtained related results on the convergence of sample path averages.

1.2 Example (coin-tossing)

To illustrate our result on the convergence of beliefs as opposed to actual
play we present the following example. Consider a game with two players A
and B. Player A (resp. B) has two actions to choose from at each date, TOP
and BOTTOM (resp. LEFT and RIGHT). The stage-game payo�s are as
below:

Players have a discount factor of 0 (i.e., seek to maximize stage game payo�s
in each period).

Let sA be a realization from in®nitely many independent and identical
coin-tossing experiments where an outcome from fHEADS, TAILSg is
chosen with equal probability. Hence sA is an element of fHEADS,
TAILSg1. Let sB be another realization from an i.i.d sequence of coin-tosses,
fHEADS, TAILSg1, which is independent of the sequence from which sA

was obtained. At date 0 Player A is told of sA (and is not informed about sB)
and player B is told of sB (and is not informed about sA). We may consider
sA to be player A's ``type'' and sB to be player B's type. Suppose that each
player knows how the types are drawn. Consider the following play of the
game. At date n Player A looks at the n-th coordinate of his sequence of
coin-tosses. If it is a HEADS he plays his ®rst action, TOP; if it is a TAILS he
plays his second action, BOTTOM. Similarly, if the n-th element of sB is
HEADS player B plays the action LEFT at date n, otherwise he plays action

Player B

LEFT RIGHT

Player A
TOP

1,1 0,0

BOTTOM 0,0 1,1

1 It should also be remarked that the method of proof of the two convergence results are also

radically di�erent. Nyarko (1994a) uses a separating hyperplane argument. The result of this

paper uses the original Jordan (1995) result and Blackwell and Dubins (1963) Theorem. It should

be emphasized that the techniques used in the zero discount factor problem will not work in

positive discount factor case. Further, with zero discount factor and independent types the

convergence is to Nash equilibria, while here it is to subjective equilibria.
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RIGHT. Suppose further that each player knows that the other is choosing
actions via this rule. The beliefs of each player about the other assign equal
probability to each action. Hence the vector of beliefs of players (not con-
ditioning on types) is a Nash equilibrium. However, on each sample path
(TOP, RIGHT) and (BOTTOM, LEFT) will be played in®nitely often. Note
that these pairs of actions are not Nash equilibria of the stage game. Hence
limit points of beliefs, and not actual play, are Nash equilibria. (

2 The model

2.1 Some terminology

I is the ®nite set of players. Given any collection of sets2 fXigieI , we de®ne
X �QieI Xi and Xÿi �

Q
j 6�i Xj. Given any collection of functions fi : Xi ! Yi

for ieI ; fÿi : Xÿi ! Yÿi is de®ned by fÿi�xÿi� �
Q

j6�i fj�xj�. The cartesian
product of metric spaces will always be endowed with the product topology.
Let X be any metric space. We let P�X � denote the set of probability mea-
sures de®ned over (Borel) subsets of X . Unless otherwise stated the set P�X �
will be endowed with the weak topology. If X is a cartesian product X � YZ,
we denote by MargY m the marginal of m on Y . Suppose for k � 1; 2; . . . ;K; mk

is a probability measure on a complete and separable metric space Xk.
Then we let

QK
k�1 mk denote the product measure of fmkgK

k�1 on the cartesian
product

QK
k�1 Xk.

2.2 Actions and strategies

I is the ®nite set of players. Si represents the ®nite set of actions available to
player i at each date n � 1; 2; . . .; also S � QieI Si. Even though the action
space Si is independent of the date we shall sometimes write Si as Sin and S as
Sn when we seek to emphasize the set of action choices at date n. We de®ne
SN � QN

n�1 Sn and S1 �Q1n�1 Sn, the set of date N and in®nite histories,
respectively. s0 will denote the null history, (at date 0, when there is no
history)! In summary, s or S with a ``superscript'' (e.g., sN ) denotes the
history, while with a ``subscript'' (e.g., sn) denotes the current period. Perfect
recall is assumed: at date n when choosing the date n action siN , player i will
have information on sNÿ1 � fs1; . . . ; sNÿ1g. We de®ne FiN � ffiN :
SNÿ1 ! P�Si�g; Fi �

Q1
N�1 FiN and F �QieI Fi. Fi is the set of all behavior

2 In the interest of ease of exposition the following conventions will be adopted in the paper

without explicitly mentioning them: All spaces in this paper will be metric spaces. For such a

space, any generic subset of a space will be assumed to be a Borel subset, any generic function

will be assumed to be Borel measurable and any generic probability will be assumed to be de®ned

on Borel subsets. These quali®ers will usually not be repeated in the text. All statements in this

paper involving conditional probabilities will usually be independent of the version chosen.

Hence we shall make statements like ``the conditional probability ...'' when we should be saying

``any version of the conditional probability.'' Such versions will also be assumed to be regular

(i.e., they are Borel measurable in their conditioning arguments). R denotes the real line.

646 Y. Nyarko



strategies for player i. FiN is endowed with the topology of pointwise con-
vergence; Fi and F are endowed with their respective product topologies. The
mapping m : F ! P�S1� de®nes the probability distribution m� f � on S1

resulting from the behavior strategy pro®le f ; i.e., induced by the following
transition equation:

m� f � DjsNÿ � � fN�1 sNÿ ��D� 8D � SN�1 : �2:1�

2.3 The type space and payo�s

Each player ieI has an attribute vector which is some element hi of the set Hi.
ui : Hi � S ! R is player i's within-period continuous and bounded utility
function which depends upon her attribute vector, hi, as well as the vector of
actions, seS, chosen by the players. Each player i knows her own attribute
vector hi but does not necessarily know those of other players, hÿi. We shall
suppose that Hi is a compact subset of ®nite dimensional Euclidean space.
Player i has a discount factor which is a (known) continuous function,
di : Hi ! �0; 1�, of the player i's attribute vector. We de®ne Ui : Hi� S1 ! R

by Ui�hi; s1� �
P1

n�1�di�hi��nÿ1ui�hi; sn� where s1 � fsng1n�1 and Vi : hi�
F ! R by Vi�hi; f � �

R
S1 Ui�hi; s1�dm�f �.

Each player i is characterized by a type, si. The type si will specify, among
other things, that player's attribute vector, hi. We let Ti denote the set of
possible types of player i, and set T �QieI Ti. We let hi�si� denote the at-
tribute vector of player i of type si. We assume that hi�si� is continuous in si;
(by appropriately de®ning the type space this can be shown to be without loss
of generality). The type space will be assumed to be a complete and separable
metric space. We de®ne

X � T � F � S1 : �2:2�

2.4 The prior beliefs of players

We shall say that a probability measure l eP�T � F � S1� respects the
probability m( f ) if m� f � is a version of the conditional probability, l�:js; f �,
of l over S1 conditional on �s; f �eT � F . An ex ante subjective belief for a
player i is any probability li over T � F � S1 which respects the probability
m�f �. We will use the following assumptions on li:

li Mi [M0
i

ÿ � � 1 �2:3�
where

Mi �
(

s; f ; s1� �eX : di�hi� > 0 and fi maximizes

Z
Fÿi

Vi�hi�si�; :; fÿi�dli�:jsi�
)
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and

M0
i �

(
s; f ; s1� �eX : di�hi� � 0 and 8n; sin�1 maximizes

Z
Sÿi

ui hi�si�; :; sÿin�1� �dli :jsn; si� �
)

:

MargF li�:js� �
Y
jeI

MargFj
li�:jsj� for li almost every s : �2:4�

MargT li is a product measure on the type space T ;

i.e.,

MargT li �
Y

jeI

MargTj
li

h i
:

�2:5�

Assumption (2.3) requires that with li probability one each player i is
maximizing subjective expected discounted sum of utilities. Whenever the
discount factor is equal to zero (i.e., on the set M0

i above) player i will be
required to maximize expected utility at each date. (2.3) does not imply that
under i's belief about the game other players j 6� i are maximizing their
expected utility. Assumption (2.4) says that other than through their types,
players have no way of correlating the choice of their behavior strategies.
Assumption (2.5) is a restriction on the beliefs of players over the type space
and requires them to be product measures3.

Given any two probability measures l0 and l00 on some (measure) space
X; l0 is absolutely continuous with respect to l00 if for all (measurable)
subsets D of X; l0�D� > 0 implies that l00�D� > 0. We then write l0 � l00. l0

and l00 are mutually absolutely continuous if l0 � l00 and l00 � l0. Fix a
collection of ex ante subjective beliefs of players, fligieI . Fix any measure l�

over X which respects the probability m� f �. Then l� and fligieI obey the
generalized Harsanyi consistency condition, (GGH), if

�GGH� MargTi�S1l� �MargTi�S1li for all ieI : �2:6�

The usual Harsanyi (1967) consistency condition requires li � lj for all i; jeI ,
in which case by setting l� � li we obtain (GGH). Elsewhere (Nyarko
(1997a)) we have de®ned Condition (GH) to be where li and lj are mutually
absolutely continuous with respect to each other. (GGH) above generalizes
this latter condition (hence the name ``GGH'') by ®rst requiring merely
absolute (and not mutual absolute) continuity, and this with respect to
marginals. The measure l� in (GGH) is often interpreted as the ``true dis-
tribution.''

3 Assumptions (2.4) and (2.5) imply that for each i; li is a product measure over
Q

jeI Tj � Fj

(which is part of the de®nition of a Bayesian Strategy Process in Jordan (1995)). Nyarko (1994a)

has shown that without (2.5) in general there is no longer convergence of beliefs to Nash

equilibria; rather the convergence is to correlated equilibria.
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2.5 Kuhn strategic representation of (type unconditional) beliefs (KSRBs)

For each ieI , we de®ne equivalence class relation, �, on Fi as follows: For
each fi and f 0i eFi, fi � f 0i if for all fÿieFÿi; m�fi; fÿi� � m�f 0i ; fÿi�. Let Fi �
denote the set of equivalence classes of �. From Kuhn's (1953) Theorem and
(Aumann (1964) for the in®nite horizon case) we may conclude that there is a
function ji : �P�Fi ! Fi � such that for any (mixed strategy) uieP�Fi� and
any fiej�ui� and any fÿieFÿi, the probability distribution on S1 induced by
ui and fÿi is equal to m�fi; fÿi�. The behavior strategy fiej�ui� is said to be
realization equivalent to the mixed strategy ui.

Fix any collection of ex ante subjective beliefs of players fligieI . Fix any

f �ij e j�MargFj
li�:�� and define f �i � ff �ij gjeI : �2:7�

From (2.4) and (2.5) li is a product measure over
Q

jeI �Tj � Fj�. Consider an
outside observer with belief lieP�X� who never observes the types of the
players. Such an outside observer will have a belief

Q
jeI MargFj

li over F.
Denote this by li�df � and observe that it is realization equivalent to f �i. Hence
we may refer to f �i as the Kuhn strategic representation of beliefs (or KSRB) of
li�df �. We stress here that this representation does not condition on types!

The shift operator riN : SN � Fi ! Fi is de®ned by setting for each sN eSN

and fieFi; riN �sN ; fi� � f 0i where the date n coordinate of f 0i is de®ned by
f 0in�:� � fiN�n�sN ; :�. If f �i is the KSRB of the outside observer with belief li
whodoes not observe players' types, then f �iN � riN �sN ; f �i� is theKSRBof that
outside observer's belief about the ``future'' following the date N history sN .

2.6 Nash and subjective equilibria

Fix any attribute vector h � fhigieIeH. De®ne 8ieI

Ni�hi� � f �
Y

jeI

fjeF : fie argmax Vi�hi; fÿi; ��
( )

;

N�h� � \ieI Ni�hi� ;
and

ND�h� � fmeP�S1� : there exists an f eN�h� with m � m�f �g :
N�h� is the set of Nash equilibrium behavior strategy pro®les for the com-
plete information game with ®xed attribute vector h. ND�h� is the set of all
distributions of play that can be generated by some Nash equilibrium be-
havior strategy pro®le. ND�h� is also equal to the set of all distributions that
are induced by some subjective equilibrium pro®le of strategies. (For de®ni-
tion of latter see Battigali et al. (1988) and (1992) or Kalai-Lehrer (1993b).)

3 Convergence to Nash equilibria

Given any leP�X�, and any date N , let l�:jsN � be (any ®xed version of ) the
conditional probability of l given the history sN . Let lN �dsN��jsN � denote
the probability distribution over the ``future'', sN�� � fsN�1; sN�2; . . .geS1
conditional on the ``past,'' sN , induced by the measure l�:jsN �. The norm k:k
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denotes the total variation norm on P�S1�; i.e., given p; qeP�S1�,
kp ÿ qk � SupEjp�E� ÿ q�E�j, where the supremum is over (Borel measur-
able) subsets E of S1. Let fxng1n�1 be a sequence in some metric space X . Let
v be any subset of X . We write xn !cv if every cluster point of fxng1n�1 lies in
the set v. Recall that P�S1� is endowed with its weak topology.

We are now ready to state our main result in Theorem 3.1. The set W in
Theorem 3.1 is the event where the players' beliefs about the future,
sN�� � fsN�1; sN�2; . . .g, given the past, sN , (and not conditioning on types)
``merge'' with l� (and hence with each other) as the date N tends to in®nity.
GD is the set where limit points of each player's beliefs about the future
conditional on the past (not conditioning on own-types) play like some Nash
equilibrium. Gi is the set where cluster points of the continuation strategies of
player i's KSRB of beliefs not conditioning on own types, f �i, lie in the set
Ni�hi�. In particular4, if g � gi; gi� �eF is such a cluster point then g is a best-
response to gi for the player with attribute vector hi. Theorem 3.1 states that
each of the sets W , GD and fGigieI have probability one.

Theorem 3.1. Let fligieI be a collection of ex ante subjective beliefs of players
and suppose that they satisfy (2.3)±(2.5). Let l�eP�X� and suppose that l�

and fligieI obey (GGH). De®ne 8ieI ,

Gi � s; f ; s1� �eX : rN sN ; f �i
ÿ �! cNi�hi�

� 	
and G � \ieI Gi ;

GDi � s; f ; s1� �eX : liN dsN��jSNÿ �! cND�h�s��� 	
and GD � \ieI GDi ;

and

W � s; f ; s1� �eX : limN!1 kliN dsN�� j sNÿ �ÿ l�N dsN�� j sNÿ �k � 0 8i; jeI� 	
:

Then

l��W \GD \ G� � 1 : �3:1�

4 Comparison with Kalai and Lehrer (1993a)

Consider again our model with I players each having beliefs represented by
the ex ante subjective beliefs fligieI de®ned in Section 3 and obeying best-
response and independence conditions, (2.3)±(2.5). Let l� denote the induced
true distribution over X, with some given distribution of initial types. This of
course captures the KL93 model when extended to a situation with many
types, as is indeed described in section 6 of their paper. Our formulation is
slightly more general since we do not assume that fligieI is a Bayesian-Nash
equilibrium, and we have not placed any restrictions on the type space.

4 Note that G 6� \ieI s; f ; s1� �eX : rN sN ; f �i� � ! cN�h�f g. Instead, the former set contains the

latter, usually strictly. In particular G is not the set where continuation of KSRB of beliefs are

Nash equilibria. The di�erence is the same as the di�erence between Nash and subjective Nash

equilibria, and is because on G players are allowed to have di�erent (limit) beliefs about play o�

the equilibrium path.
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The natural extention of the KL93 assumption to the model with many
types is:

�KL� a: l��TKLÿT � � 1 where TKLÿT � \ieIfs � �si; sÿi�eT jMarg
S1

l��: j s�
� Marg

S1
li�: j si�g :

Marg
T i

l� �Marg
T i

li 8ieI :b:

Part (b) of �KL� is a technical condition which is required to rule out un-
important probability zero issues on the type space5. Part (a) of (KL) de-
livers, with part (b), the KL93 conclusions for l�-almost every s.

Proposition 4.1: (KL) implies (GGH).

Theexamples in sections1.2and5showthat (GGH)canbe truewhile (KL) fails.
Hence Proposition 4.1 above implies that (KL) is strictly stronger than (GGH).

5 Some related recent literature

Koutsougeras and Yannelis (1994) have provided convergence results related
to those presented here. For a survey of this and other related papers we refer
the reader to Nyarko et al. (1994b). The model of this paper is immune to the
criticisms of Nachbar (1996), which, I believe, are aimed more at the Kalai
and Lehrer paper. Nachbar's main argument is that ``prediction'' of the
future play of the game may be in opposition to ``optimization'', and that
both prediction and optimization are often possible only if one assumes
equilibrium from the beginning. Since, in this paper, we have a fairly weak
absolute continuity condition (GGH), our formulation does not imply the
stronger de®nition of prediction as used in Nachbar's paper. Indeed, by
pointing out possible problems with the stronger notion of prediction (which
are implicit in stronger notions of absolute continuity), the Nachbar paper
actually puts our condition (GGH) in a much better light. It should also be
remarked that the principal assumption I use in this paper is the absolute
condition (GGH) which, loosely speaking, requires that set of sample paths
which has positive probability under the true distribution, also has positive
probability under each player's beliefs. Nowhere is there an assumption of
equilibrium or coordination of beliefs, other than through (GGH)! Further
discussion of the relation between this paper and those of Jordan (1991 and
1995), Nachbar (1996) and Kalai-Lehrer (1993) appear in Nyarko (1997).

5 Failure of KL-Tb would make it hard to interpret l� as the ``true distribution.'' Suppose (KL)-
b. fails. Then l� will assign positive probability to a set of own types �T i � Ti which li assigns zero

probability to. What does player i do when he observes such an own type, sie�Ti? On the set �T i

player i could behave irrationally and still be consistent with (2.3). (One could then ask that (2.3)
be strengthened to require, instead, the maximization to hold conditional on a given si for all si,

rather than ``with ex ante probability one'' as stated. However this then introduces potential

problems, including measurability issues.)
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Lehrer and Smorodinsky (1997) also obtain a convergence to Nash result.
They begin with the model of Jordan (1995) and add a ``separation'' con-
dition on beliefs which is weaker than that of KL93. In our paper we begin
with the Jordan model and remove conditions. In particular, the Jordan
model is ours with the additional requirement of common priors,
li � lj for all i; jeI (from which condition (GGH) follows trivially). Our
condition (GGH) is therefore strictly weaker than the assumptions of Lehrer
and Smorodinsky6. Sandroni (1995a,b) has also obtained related conditions
for convergence to Nash equilibrium, none of which is weaker than our
condition7 (GGH).

6 Conclusion

We have provided a condition under which there is convergence to Nash or
Subjective equilibria in in®nitely repeated games. Our result is that beliefs,
and not actual play, converge. We have argued that when the type space is
big (uncountably so), then this is often the best conclusion that can be ob-
tained. A connection between convergence of beliefs and convergence of
actual empirical distributions of play (i.e., sample path averages) may be
obtained by using the results of this paper in conjunction with the results of
Nyarko (1994a) or Jordan (1996).

Appendix

Proof of Theorem 3.1. We shall show ®rst that

W \ G � GD : �8:1�
This part of the proof will follow directly from the de®nitions of the sets W ,
G and GD. We will next show that

l��W \ G� � 1 : �8:2�
This second part of the proof uses (GGH) and the original Jordan (1995)
result with common priors. It should be obvious that (8.1) and (8.2) imply
the conclusion of Theorem 3.1.

6 I conjecture that the Lehrer and Smorodinsky result can be generalized to handle models

without common priors. However, even in that case their assumption will then be at best merely

incomparable with (and not weaker) than ours since even under common priors example 1.5

satis®es our condition (GGH) but fails their ``separation'' condition. To see this note that their

separation condition implies convergence of actual play to Nash equilibrium, which we know is

not the case in that example.
7 Sandroni (1995a) introduces the notion of almost absolute continuity (which is a simple

variation of KL93's absolute continuity) and shows that almost absolute continuity is necessary

and su�cient for convergence to Nash equilibrium.
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We now show (8.1). Fix any sample path s; f ; s1� �eW \ G. Fix any i0eI
and let fn�k�g1k�1 be a sub-sequence of dates such that limk!1
li0N�k� dsN�k��� j sN�k�ÿ �

exists and is equal to some m1eP S1� �. Since
s; f ; s1� �eW ; limk!1 ljN�k� dsN�k��� j sN�k�ÿ � � m1 for all jeI . For ease of ex-
position de®ne along the given sample path for each ieI ; f �iN � rN sN ; f �i� �.
Since F is compact in its weak topology we can extract a further sub-se-
quence fN�kt�g1t�1 of the subsequence fN�k�g1k�1 such that for each ieI ,

limt!1 f �iN�kt� exists and equals some f �i1eFi : �8:3�
Note that (i) from the de®nition of a KSRB we conclude that m f �i1

ÿ � � v1
for all ieI and (ii) from the obvious continuity of the payo� function,
f �i1e Ni�hi�. Consider the collection f �i1

� 	
ieI , where for each i; f �i1 �

f �ii;1; f
�i
ÿi;1

n o
and where f �ii;1 denotes i's strategy and f �iÿi;1 is player i's belief.

Properties (i) and (ii) above are actually the de®ning relations of what is
referred to in the literature as a subjective equilibrium. Standard arguments
then imply that there exists a Nash equilibrium which plays like it: i.e.,
v1eND�h�. We have therefore shown the following: For any sample path
s; f ; s1� �eW \ G, if for some i0eI along a subsequence of dates

li0N dsN�� j sN� � converges to some m1eP S1� � then v1eND�h�s��. This
proves (8.1).

We now prove (8.2). A careful reading of the proof of main result of
Jordan (1995) indicates that what is indeed shown is that li�Gi� � 1 (and we
spell out the details below). From its de®nition, one can easily see that the set
Gi ``depends only on si; s1� �'' in the following sense: there exists a Borel-
measureable subset Ui of Ti � S1 such that Gi � s; f ; s1� �eX j si; s1� �eUif g:
Hence the marginal of li on Ti � S1 assigns probability one to Ui. From
(GGH) the same is true of l�. Hence l��Gi� � 1; 8ieI . From (GGH) and the
Blackwell-Dubins (1962) merging of opinions result, we conclude that
l��W � � 1. Combining these equalities then proves (8.2). This completes the
proof of Theorem 3.1. (

Theorem (Jordan, 1995). Fix any ieI and suppose that lie P�X� obeys
conditions (2.3)±(2.5). Then li�Gi� � 1:

Proof of Propostion 4.1: For8 ease of exposition we adopt the convention in
footnote 8 below. Suppose that (KL) is true. Fix any ieI and any D � Ti �
S1. De®ne for each sieTi, the set D�si� � s1eS1 j sis1� �eDf g and
C � sieTi j li�D�si� j si� � 0f g. Suppose that li�D� � 0. Then li�C� � 1:
(KLb) then implies that l��C� � 1: (KLa) in turn implies the event
seT j l��D�si� j s� � 0f g has l� probability one.

So,

8 If l is a probability over a product space X1 � X2 and M � X1 we let l�M� denote l�M � X2�:
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0 �
Z

T
l��D�si� j s�dl� �

Z
T i

� Z
T ÿi

l��D�si� j �si; sÿi��dl�
�

dl�

�
Z

T i

l��D�si� j si�dl� � l��D� :

We have therefore shown that li�D� � 0 implies that l��D� � 0. (GGH)
therefore holds. (
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