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Most games violate the common priors doctrine

Yaw Nyarko∗

The type of a player in a game describes the beliefs of that player about the types of
others. We show that the subset of vectors of such player-type beliefs which obey the
consistency condition sometimes called the Harsanyi doctrine is of Lebesgue measure
zero. Furthermore, as the number of players becomes large the ratio of the dimension
Harsanyi-consistent beliefs to the set of all beliefs tends to zero.
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1 Introduction

Consider a game with N players each of whom is one of a finite number of types. The type
of a player describes the beliefs that a player-type has about the types of the other players.
A belief system is a specification of the beliefs of each player-type. A belief system is said to
be consistent if there exists a probability measure, π , over the set of vectors of all types such
that each player-type’s beliefs equal the probability measure π conditional on that type.
This consistency requirement is typically referred to as the “Harsanyi doctrine” of Harsanyi
(1968). Harsanyi (1968) argues that all differences in beliefs of players must be due to
differences in the information they have received and, hence, players must necessarily have
consistent belief systems.

In a Harsanyi consistent game the type of a player fulfills two roles: first, it specifies the
beliefs of that player about the types of the others; and, second, it provides the signal used
in conditioning the joint probability, π , to obtain beliefs about other agents. The beliefs
obtained via these two roles must be the same. The results of the present paper show that
this places a lot of restrictions on the belief systems possible, and, in particular most of
them cannot fulfill both roles simultaneously.

Let B denote the set of all belief systems and let H denote the subset of B that obeys
the Harsanyi doctrine. I show that the dimension of H is much lower than that of the set B
and, hence, the set H has Lebesgue measure zero in B. Among the set of all belief systems,
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most of them violate the Harsanyi doctrine. I also show that relative to the dimension of B
the dimension of H becomes arbitrarily small as the number of players tends to infinity.

That a belief system can violate the Harsanyi doctrine is well-known among researchers
in this area (see e.g. Mertens and Zamir 1985). However, to the best of my knowledge, this
result on the size of the set of belief systems that violate the Harsanyi Doctrine is new.1

The result itself, once the problem has been set up to answer the appropriate question,
is embarrassingly easy to prove, and involves counting the dimensionality of certain sets.
The question that is being asked reduces to the following: When does there exist a joint
probability measure with given conditional distributions? Our answer is: almost never.
(This is of course not to be confused with the question of the the existence of a joint
distribution with given marginals [see e.g. Strassen 1965]).

One often hears the argument that if one adds some extra states or passive agents to
the game one can transform any game into one for which the Harsanyi doctrine holds. The
setup of this paper should show that this is not possible if such a transformation is done
properly.

The Harsanyi doctrine is of course is an assumption often used in many papers in game
theory and in other applied fields like industrial organization theory. Elsewhere we have
argued that the use of the Harsanyi doctrine may be very restrictive in models of learning
(see Nyarko 1990).

2 An illustration for the 2 × 2 case

Suppose there are two Players A and B. Player A can be one of two types a1 or a2, and
Player B can be one of two types b1 or b2. Conditional upon each player’s type, that player
will have beliefs about the types of the other player. Because each player can only be one
of two types, each player’s beliefs about the other is a number in [0, 1] representing the
probability that player assigns to the other player being of the first type.

In particular, Player A’s belief system is a pair p = (p1, p2) ε[0, 1]2, and Player B’s is
a pair q = (q1, q2) ε[0, 1]2, with the following interpretation:

pi = Prob (b1 | ai ) and qi = Prob(a1 | bi ) for i = 1, 2. (1)

The set of all beliefs systems, (p, q), is the set B = [0, 1]4.
If these beliefs are to obey the Harsanyi doctrine there must exist a

joint probability measure π = {πi j }2
i , j=1 over the four pairs of possible types

{(a1, b1), (a1, b2), (a2, b1), (a2, b2)}, where π ij denotes probability assigned to the vec-
tor (ai , b j ) by the probability π, such that each player’s beliefs are obtained via conditioning
π on that player’s own realized type (i.e. such that pi = π(b1 | ai) and qi = π(a1 | bi) for
i = 1, 2).

I will restrict attention to strictly interior belief systems; that is, where (p, q) ε(0, 1)4.
In that case, if a probability π with the abovementioned properties does exist, then from

1
Very recently, and long after the first working paper versions of this paper, Hellman and Samet (2009)
considered a similar question in the context of generalized partitional knowledge spaces.
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Bayes’ rule we know that such a probability must satisfy the following relationships:∑
i , j

πi j = 1 where the sum is over i , j = 1, 2 (2)

p1 = π11/(π11 + π12) (3)

p2 = π21/(π21 + π22) (4)

q1 = π11/(π11 + π21) (5)

q2 = π12/(π12 + π22). (6)

Observe that in the above system of equations, if we consider the vector (p, q) as given,
then there are four unknowns, {πi j }2

i , j=1 and five equations. This system of equations is
overidentified and, in general, the system of equations will not have a solution. Indeed,
from (3)–(6) it is easy to verify that

q2 = [(1 − p1)/p1]/{[(1 − p1)/p1] + [(1 − p2)/p2][(1 − q1)/q1]}. (7)

Equation (7) requires that q2 be an (explicit) function of (p1, p2, q1). The subset of
vectors (p1, p2, q1, q2) in the unit simplex in R4, which are Harsanyi consistent, necessarily
satisfy (7) and, therefore, lie in a three dimensional subset of R4.

3 The general problem

Now suppose there are N players, i = 1, . . . , N. Each player can be one of a finite number
of types, cikεCi , for k = 1, . . . , #Ci , where #Ci is the cardinality of of the set Ci. Let
C = X N

i = 1Ci denote the set of all possible vectors of types, one for each player, and let
C−i = X j �= i C j denote the set of vectors of types of all players other than the ith player.
Given any finite integer T let �(T) denote the (T − 1) dimensional unit simplex in RT ,
and let �(T)+ denote the strictly positive subset of �(T):

�(T) =
{

x = (x1, . . . , xT )εRT

∣∣∣∣
T∑

t = 1

xt = 1 and xt ≥ 0 for all t

}

and �(T)+ = {x = (x1, . . . , xT )ε�(T) | xt > 0 for all t}. (7)

Associated with the kth type of the ith player, c ik , is the belief that player has about the
types of the other players. This will be a probability measure, pik , on C−i ; in particular,
pikε�(#C−i ). A belief system for the players is a specification of such a vector pik for each
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player i, and for each type of player i, c ik . We let B denote the set of all belief systems and
let B+ be the subset of belief systems in B that are strictly positive; that is,

B = X N
i = 1 XcikεC ik � (#C−i) and B+ = X N

i = 1 XcikεC ik � (#C−i )
+. (8)

Recall that C = X N
i = 1Ci is the set of all player types. Let G be the set of all probability

measures over C and let G+ be the subset of C that are strictly positive:

G = �(#C) and G+ = �(#C)+. (9)

For a belief system of players, pεB, to be consistent in a Harsanyi (1968) sense and,
hence, to obey the “Harsanyi doctrine,” there must exist a probability measure πεG on the
set of all possible vectors of types of players, C, from which the beliefs of each player of each
type is obtained by conditioning on their own types; that is, pik = π(. | cik) for each player
i and type c ik , where π(. | cik) denotes the conditional probability of π conditional on c ik .
Because the set of types are finite, the conditional probabilities can be obtained using Bayes’
rule.

Indeed, fix any belief system pεB and probability measure over types, πεG. Let pik(c−i)
and π(c) denote the probability assigned to c−iεC−i and cεC by pik and π , respectively. Let
{c−i , cik} denote the element of C whose ith coordinate is c ik and whose other coordinates
are the vector c−i; and let π(c ik) be the probability assigned by π to the event that the ith
player’s type is c ik .

For a belief system pεB to be consistent we require the existence of a probability πεG
that obeys Bayes’ rule: For each i = 1, . . . , N, for each c ikεCi such that π(cik) > 0, and
for each c−iεC−i,

pik(c−i ) = π({c−i , cik})/π(cik). (10)

Now, each vector in �(#C−i) is a vector in a (#C−i − 1)-dimensional space. Hence,
from (8), the set B is a set of vectors of dimension

dim B =
N∑

i = 1

(#Ci )(#C−i − 1) = N X N
i = 1(#Ci ) −

N∑
i = 1

(#Ci ). (11)

Because we are primarily concerned with dimensionality calculations we may restrict
our attention to strictly positive belief systems; that is, those in B+ and H+, and strictly
positive joint probability vectors (in G+). Now each probability πεG+ induces a unique
belief system b(π) in H+ via Bayes’ rule, (10). It is easy to check that this mapping b:G+ →
H+ is continuous on G+. From the definition of H+, for each pεH+, there exists a πεG
such that b(π) = p; it is easy to check that if p is strictly positive, that is, pεH+, then so is
π so that the mapping b:G+ → H+ is ONTO.

Next, if pεH+, then p is an indecomposable belief system in the sense of Harsanyi
(1968, Theorem III) and, therefore, from that theorem there can only be one probability
πεG that induces it (i.e. such that b(π) = p). In particular, the mapping b:G+ → H+

is ONE-TO-ONE. It is also easy to check that the mapping b:G+ → H+ is differentiable.
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Hence, we may identify the set G+ with H+ in the dimensionality calculations and, in
particular, we may set

dim H = dim G = #C − 1 = [
X N

i = 1(#Ci )
] − 1 (12)

(e.g. via applications of Sard’s Theorem).2

Of course, without loss of generality we may suppose that there are at least two players
and that each player has at least two possible types, so that #Ci ≥ 2 for all i. With (11) and
(12) we may now very easily state and prove our main result (which follows immediately
from Lemma 1 in the Appendix).

Proposition 1 (a) Fix the number of players N ≥ 2. Then dim H < dim B and, in par-
ticular, the subset H of Harsanyi consistent belief systems has Lebesgue zero in the set B of all
belief systems.
(b) As the number of players N tends to infinity the ratio [dim H/dim B] tends to zero and the
difference [dim B − dimH] tends to infinity. Indeed,

[dim H/ dim B] ≤ 1/(N − 1) and [dim B − dim H] ≥ (N − 1)2N + 1 (13)

Appendix

Lemma 1 Fix any integer N ≥ 2 and let {zi }N
i=1 be any sequence of real numbers such that zi ≥ 2 for each

i = 1, . . . , N. If

WN = N
(

X N
i = 1zi

) −
N∑

i = 1

zi and UN = X N
i = 1zi − 1, then

WN > UN , WN − UN ≥ (N − 1)2N + 1 and UN/WN ≤ 1/(N − 1). (14)

PROOF: First we will show that for each N ≥ 2,

N∑
i = 1

zi ≤ X N
i = 1zi . (15)

Fix any integer N ≥ 2. Order the N numbers {zi }N
i = 1 and relabel if necessary so that z1 ≥ z2 ≥ · · · ≥ zN.

Define Sk = ∑k
i = 1 zi and Pk = Xk

i = 1zi . Then S1 = z1 = P1 and if Sk ≤ Pk , then,

Sk + 1 = Sk + zk + 1 ≤ Sk + zk ≤ 2Sk ≤ zk + 1 · Sk ≤ zk + 1 · Pk = Pk + 1.

Hence, by induction, (15) holds for each N. This, in turn, implies that for N ≥ 2, WN − UN = (N −
1)(X N

i = 1zi ) − ∑N
i = 1 zi + 1 ≥ (N − 2)(X N

i = 1zi ) + 1 ≥ (N − 1)2N + 1, from which the first two in-

equalities of (14) follow. Furthermore, UN/WN = [PN − 1]/[N P N − SN ] ≤ PN/[N P N − PN ] = 1/

[N − 1]. �
2
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