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AN EXPERIMENTAI, STUDY OF BELIEF LEARNING 
USING ELICITED BELIEFS 

BY YAW NYARKO AND ANDREW SCHOTTER1 

This paper investigates belief learning. Unlike other investigators who have been forced 
to use observable proxies to approximate unobserved beliefs, we have, using a belief elici- 
tation procedure (proper scoring rule), elicited subject beliefs directly. As a result we were 
able to perform a more direct test of the proposition that people behave in a manner con- 
sistent with belief learning. What we find is interesting. First to the extent that subjects 
tend to "belief learn," the beliefs they use are the stated beliefs we elicit from them and 
not the "empirical beliefs" posited by fictitious play or Cournot models. Second, we present 
evidence that the stated beliefs of our subjects differ dramatically, both quantitatively and 
qualitatively, from the type of empirical or historical beliefs usually used as proxies for 
them. Third, our belief elicitation procedures allow us to examine how far we can be led 
astray when we are forced to infer the value of parameters using observable proxies for 
variables previously thought to be unobservable. By transforming a heretofore unobserv- 
able into an observable, we can see directly how parameter estimates change when this new 
information is introduced. Again, we demonstrate that such differences can be dramatic. 
Finally, our belief learning model using stated beliefs outperforms both a reinforcement 
and EWA model when all three models are estimated using our data. 

KEYWORDS: Belief learning, game theory, experimental economics. 

1. INTRODUCTION 

IN RECENT YEARS GAME THEORISTS and experimental economists have 
focused a great deal of attention on the question of how people learn when 
repeatedly playing a simple matrix game. While some, e.g., Roth and Erev 
(1998) and Arthur (1991), focus on reinforcement learning in which people 
learn by looking back at their experience and seeing what has been success- 
ful in the past,2 others (Cheung and Friedman (1997), Boylan and El-Gamal 
(1993), Mookherjee and Sopher (1994, 1997),3 Rankin, Van Huyck, and Bat- 
talio (1997), and Fudenberg and Levine (1998)) focus on belief learning and look 

1 This paper was written under NSF Grant #SES-9905227. The authors would also like to thank the 
CV. Starr Center for Applied Economics for its financial support. We would like to thank an editor 
and three anonymous referees for their very constructive comments and suggestions. In addition, 
we owe a great deal of thanks to Sangeeta Pratap for all her assistance as well as that of Gautam 
Barua, Allan Corns, and Judy Goldberg. Finally, we would like to thank the participants of the 
Cal Tech/UCLA Experimental Economics Workshop and the New York University Microeconomics 
Seminar for their helpful suggestions. 

2 Reinforcement learning is actually an outgrowth of the psychology literature (see Thorndike 
(1898) and Bush and Mosteller (1955)) whose main unifying theme is the "law of effect," which states 
that actions that have been successful in the past should be used more often in the future. 

3 Mookherjee and Sopher actually investigate both belief and reinforcement learning. 
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to the past to update beliefs about their opponent's future action. Still others 
(Camerer and Ho (1999)) select the best features of both of these models (among 
other things) in an approach that has proven to be remarkably successful. 

In all of this research, however, there is an assumption that while past actions 
and payoffs are observable, beliefs are unobservable and therefore must be rep- 
resented by proxies and inferred. For example, in the two most common belief 
learning models, the Cournot and fictitious play models, beliefs are either equiv- 
alent to the last period action of one's opponent, or an average of the previous 
actions of one's opponent. Some authors also use what we shall subsequently 
refer to as y-weighted empirical beliefs (or simply empirical beliefs). Here a 
weighted average of past actions is taken as a proxy for beliefs, where the weights 
decline geometrically at rate y. (See Rankin, Van Huyck, and Battalio (1997), 
Cheung and Friedman (1997), and Fudenberg and Levine's (1998) model of 
smooth fictitious play.) At various points in our paper below we will focus on fic- 
titious play models because, given their widespread use, both experimentally and 
theoretically, they form a natural baseline from which to measure our results. 

This paper presents the results of a series of two-person constant-sum game 
experiments in which we directly elicited the beliefs of subjects using a "proper 
scoring rule" which provided subjects with an incentive to report their beliefs 
truthfully. We call these beliefs the subjects' "stated" beliefs. As a result, this 
paper presents, we think for the first time, an investigation of belief learning in 
which all relevant variables are observable; i.e., we study belief learning using 
elicited beliefs.4'5'6 

Our original research plan leads us to ask three questions: 
Question 1: Are fictitious play beliefs (or, more generally, y-weighted empirical 

beliefs) a good proxy for stated beliefs? 
Question 2: If subjects best respond, what is it that they best respond to? I.e., 

do they best respond to their stated or their empirical beliefs? 
Question 3: If, as the experimental learning literature leads us to believe, sub- 

ject behavior can best be described by a logistic belief learning model, which 
beliefs, when employed in such a model, provide the best fit for our data? 

What we found is quite revealing. 
First, we found little support for the idea that the process of forming fictitious 

play or empirical beliefs is descriptive of how subjects (or perhaps people in 
general) form their true or stated beliefs. Fictitious-play beliefs define a very 
stable time path while the stated beliefs of our subjects vary greatly from period 
to period. 

4We would like to thank Jason Shachat for supplying us with his laboratory program. 
5Shachat (1996) and Noussair and Faith (1997) allow for the use of mixed strategies, but neither 

allow for observable beliefs. 
6 Others have elicited beliefs in the study of public goods problems, most notably Offerman (1997) 

and Offerman, Sonnemans, and Schram (1996). See also McKelvey and Page (1990). This paper, on 
the other hand, presents an attempt to integrate this belief solicitation procedure into the study of 
belief learning. 
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Our study of Question 2 indicates that it is stated beliefs to which subjects 
best respond the most often. More specifically, in our Experiment 1, the strategy 
choices of subjects are consistent with best responses to their stated beliefs almost 
75% of the time, while the comparable percentages for Cournot and fictitious 
play beliefs are around 55%. It should be noted, of course, that random choices 
would lead to consistent best response 50% of the time. 

It is ironic to point out that even though subjects appeared to best-respond to 
their stated beliefs, these beliefs were not more accurate than simple fictitious- 
play beliefs in actually predicting what one's opponent was doing. The puzzle 
remaining, therefore, is why do subjects persist in cueing on their own stated 
beliefs instead of switching. The differences in the accuracy of the two beliefs, 
however, were very small although statistically significant (see Section 3.1.3). We 
show in that section that this may have a lot to do with the metric we use in 
scoring the accuracy of forecasts, and that for other reasonable metrics stated 
beliefs actually predict better than fictitious play beliefs. 

Finally, in studying Question 3, we use a logit model to predict choice behavior 
of individuals, and use this to compare three belief formation models-Cournot, 
fictitious play, and stated-in an effort to see which explains our data best. What 
we find is that the logit model using stated beliefs does a far better job of 
explaining our choice data than do any of the other belief formation models we 
examined. 

Our results tend to support the view that in the belief learning method of 
play, people use their heretofore unobserved stated beliefs and not the fictitious 
play beliefs to which the literature so often refers or various other y-weighted 
empirical beliefs. It is this discovery that we feel provides one of the main lessons 
to be learned from this paper. Furthermore, because we are able in this work 
to measure beliefs directly and compare them to the types of empirical beliefs 
so frequently used in the literature, our experimental design provides a perfect 
setting within which to investigate how far off parameter estimates derived using 
only observable action data can be when compared to those estimated using true 
or at least stated beliefs. 

One possible criticism of the use of stated beliefs is that they are not available 
outside of the laboratory, and hence out-of-sample predictions would be difficult 
to make. It is important to note, however, that there exists a wide variety of 
survey data that elicit beliefs about various economic variables, all of which could 
be used in a belief learning model of the type estimated here. 

Our results suggested a number of additional research questions. For example, 
if subjects best responded more consistently to their stated than their empirical 
beliefs, was it because we focused their attention on those beliefs by eliciting 
them during the experiment? Did matching subjects with the same opponent, 
as we did in our baseline experiments, cause the variability in stated beliefs we 
observed? In particular, would empirical beliefs be more useful in predicting sub- 
ject behavior if we randomly rotated subjects after each round of the experiment? 
These concerns led us to formulate three additional questions. 
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Question 4: When beliefs are not elicited, does subject behavior change and 
do standard fictitious play and empirical belief models fit the data better? 

Question 5: When subjects are randomly matched, are their beliefs less variable 
and do they then use their more stable fictitious-play beliefs as the basis upon 
which to best reply? 

After answering Questions 1-5 we are led to the conclusion that amongst 
the set of belief learning models, the model using stated belief does a best job 
of organizing and explaining the data. Hence, a logical next step might be to 
compare this model to other, non-belief learning, models to see which fits the 
data best. This leads us to formulate and answer Question 6. 

Question 6: How does the performance of our stated belief learning model 
compare to that of a reinforcement learning model of the Roth-Erev type or an 
EWA model when all three are estimated using our data? 

In answering these questions we find continued support for our original con- 
clusions. Eliciting beliefs does not seem to focus attention on stated beliefs and 
random matching has little, if any, effect on the behavior of subjects. In addi- 
tion, our stated belief learning model outperforms both reinforcement and EWA 
models. 

We will proceed as follows: In Section 2 we will explain the experiments per- 
formed and present our experimental design. In Section 3 we will discuss our 
results and compare them to results obtained using reinforcement and EWA 
models, while in Section 4 we will discuss what we feel we have learned from 
these experiments and present some conclusions. 

2. EXPERIMENTAL DESIGN AND PROCEDURES 

2.1. Experimental Design 

The experiments performed were run using the experimental laboratory of the 
C.V Starr Center for Applied Economics at New York University from the Fall of 
1997 through the Summer of 2000.7 Subjects were recruited from undergraduate 
economics courses and reported to the lab for experiments that took between 11 2 
and 2 hours. No subjects had any training in game theory. In these experiments 
subjects played a 2 x 2 game 60 times with the same opponent under various 
treatments. Payoffs were denominated in experimental dollars and converted into 
U.S. dollars at a rate of 1 pt. = $.05. Subjects, on average, earned approximately 
$15.00 for their participation, which was paid to them at the end of the session. 
They were paid $3.00 simply for showing up. 

7 In the original version of the paper we report the results on four additional experiments where 
subjects could use mixed strategies explicitly. Since the results of these experiments do not alter the 
conclusions of the paper in any significant manner, for parsimony we have eliminated their discussion 
here and refer the reader to Nyarko and Schotter (2000a) for a full discussion of them. 
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The game used in our experiments is presented below: 

Payoff Matrix 
Player 2 

Green Red 
Green 6, 2 3, 5 

Player 1' 
Red 3, 5 5, 3 

This game has many features we desired in our design. First, we wanted a 
game that was easy to understand, with an equilibrium that was not too difficult 
to either calculate or learn deductively. We wanted the equilibrium to be a mixed 
one, however, since we did not want equilibrium beliefs to be degenerate. These 
features were provided by a 2 x 2 constant sum game since a 2 x 2 game is as 
simple a game as one can find and the equilibria of such games are supported 
not only by the logic of best responses but also the entire weight of the mini-max 
theorem. 

Further, an important feature of the 2 x 2 game is that there are large por- 
tions of the unit interval, the domain of beliefs, over which the best response 
is constant. For example, in our experimental game whenever stated or empiri- 
cal beliefs predict that Green will be chosen with a probability p E [0.4, 1], these 
beliefs prescribe the same best response for our subjects. Such a best response 
function stacks the deck against observing differences across our belief models so 
that if we do observe statistically significant differences our results are that much 
more persuasive. Finally, because our objective was to study learning, we initially 
had subjects play against the same partner repeatedly but in a setting where the 
repeated game equilibrium prescription is unambiguous. We later relaxed this 
fixed pairing feature to test the impact of random matching. 

The program used to run the experiments8 was generously supplied to us by 
Jason Shachat and the Experimental Science Lab of the University of Arizona.9 

In the four experiments the identical 2 x 2 constant sum game was run under 
different strategic conditions. In Experiment 1 subject beliefs were elicited using 
the proper scoring rule defined below. 

To investigate Questions 4 and 5 we performed Experiments 2 and 3. In Exper- 
iment 2 we repeated Experiment 1 but did not elicit beliefs from our subjects. 
Experiment 3 replicated Experiment 1 but rather than have subjects paired with 
the same subject for 60 rounds, subjects were randomly rotated after each round. 
All of these treatments were common knowledge amongst the subjects. Finally, 
as a check on the consistency of our results with those in the existing litera- 
ture we ran one "replication experiment," Experiment 4, where we did not elicit 
beliefs and subjects were randomly matched. 

These treatments are summarized in Table I. 

8In using this program, subjects are able, if they wish, to actually choose mixed strategies by 
specifying the exact probability mixture to use in any given round. We ran several experiments in 
which this mixed strategy option was available but we will not report those results here (they are 
reported in Nyarko and Schotter (2000a)). 

9 The instructions were computerized and are available upon request from the authors. 



976 Y. NYARKO AND A. SCHOTTER 

TABLE I 

EXPERIMENTAL DESIGN AND EXTENSIONS 

No. of Rounds No. of Subjects Belief Elicitation Matching 

Experiment 1 60 28 yes fixed 
Experiment 2 60 26 no fixed 
Experiment 3 60 28 yes random 
Experiment 4 60 30 no random 

2.2. Eliciting Beliefs 

Before subjects chose their pure strategies in any round, they were asked to 
write down on a work sheet a probability vector that they felt represented their 
beliefs or predictions about the likelihood that their opponent would use each of 
his or her pure strategies.10 

When we elicited beliefs we rewarded subjects for their beliefs as follows: First 
subjects report their beliefs by writing down a vector r = (rRed, rGweeni) indicating 
their belief about the probability that the other subject will use the Red or the 
Green strategies.1" Since in this experiment only one such strategy will actually 
be used, the payoff to player i when the Red strategy is chosen by a subject's 
opponent and r is the reported belief vector of subject i will be 

(1) 'FRed = 0 10- 2i0 j - rRed) + (rGreenD2J 

The payoff to subject i when the Green strategy is chosen is, analogously, 

(2) 'WGreen = 0-.J10-2 (1-rG,eel) (rRed)2. 

The payoffs from the prediction task were all received at the end of the experi- 
ment. 

Note what this function says. A subject starts out with $0.10 and states a belief 
vector r = (rRed, rGree,). If their opponent chooses Red, then the subject would 
have been best off if he or she had put all of their probability weight on Red. 
The fact that he or she assigned it only rRed means that he or she has made 
a mistake. To penalize this mistake we subtract (1 - rRed)2 from the subject's 
$0.10 endowment. Further, the subject is also penalized for the amount he or 
she allocated to the Green strategy, rGreen, by subtracting (rGreen)2 from his or 
her $0.10 endowment as well. (The same function applies symmetrically if Green 
is chosen.) The worst possible guess, i.e. predicting a particular pure strategy 
only to have your opponent choose another, yields a payoff of 0 (and explains 
the normalization constant (1/20) which appears in the formula). It can easily 

10 The instructions for our elicitation procedure can be found on www.nyarko.com/papers.htm. 
11 In the instructions the reports r are expressed as numbers in [0, 100], so are divided by 100 to 

get probabilities. 
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be demonstrated that this reward function provides an incentive for subjects to 
reveal their true beliefs about the actions of their opponents. Telling the truth is 
optimal. 

As is true of all scoring functions, while payoffs are maximized by truthful 
revelation of beliefs, there are other beliefs that could be stated that are more 
secure in the sense that they guarantee a higher minimum payment. For example, 
reporting equal probability for each strategy would guarantee the largest minimal 
payment.12 If subjects were risk averse, such an action might be desirable. As can 
be seen in the data, there is little indication that such equiprobable vectors were 
used. 

We made sure that the amount of money that could potentially be earned 
in the prediction part of the experiment was not large in comparison to the 
game being played. (In fact, the maximum earnings that could be earned in the 
prediction part of Experiments 1 and 3 was only $6.00 as opposed to the average 
payoffs in the game of $15.00.) The fear here was that if more money could 
be earned by predicting well rather than playing well, the experiment could be 
turned into a coordination game in which subjects would have an incentive to 
coordinate their strategy choices and play any particular strategy repeatedly so 
as to maximize their prediction payoffs at the expense of their game payoffs. 
Again, we could not find evidence that such coordination exists in the data. In 
fact, we offer quite a bit of evidence that supports the view that the beliefs we 
elicited were "truthful" in the sense that subjects keyed in on them when choosing 
their actions and that they were not distorted by considerations related to the 
prediction part of the game. 

2.3. Defining Beliefs 

Given any y in (-oo, oo), we define, using the notation of Cheung and Fried- 
man (1997), player i's y-weighted empirical beliefs (or, for simplicity, empirical 
beliefs) to be the sequence defined by 

(3) biJt+l = (a ) + y=1 yi1,-,, (ai) (3) b =t+ 

where biJ1 is player i's belief about the likelihood that the opponent will choose 
action ai in period t + 1, 1(ai) is an indicator function equal to 1 if ai was chosen 
in period t and 0 otherwise, and yi" is the weight given to the observation of 
action ai in period t - u. Fictitious play beliefs are those as above for the special 
case of y = 1. We define the Cournot beliefs to be those that assign probability 1 
to opponent's previous period play. This is the special case of (3) for y = 0. 

Since there are only two actions, we represent all beliefs in terms of the proba- 
bility assigned to the action Red. Let BSt and bt(y) denote player i's date t stated 
beliefs and y-weighted empirical beliefs respectively (where t E {1, . . , T}). We 

12 See Camerer (1995) and Allen (1987) for a discussion of this point. 
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define y* to be the value of y that minimizes the distance between the stated 
beliefs and the y-weighted empirical beliefs in a mean squared error sense. That 
is, y* is the value of y that solves miny ET I IBSt - bt(y)I2. A subject's y*- 
empirical belief is bt(y*).l3 

3. RESULTS 

3.1. Our Baseline Experiment: 1 

We will structure the discussion of the results of our experiment by answering a 
series of questions which originally motivated our research. We report the results 
of our Baseline Experiment (1) first. After that we will move on to our extensions 
in Experiments 2 and 3. 

3.1.1. Question 1: Are empirical beliefs a good proxy for stated beliefs? 

To demonstrate the relationship between stated, y-weighted empirical and fic- 
titious play beliefs, we present Figures 1 and 2. Figure 1 presents a histogram of 
the distributions of absolute difference between the stated, y-weighted empirical, 
and fictitious play belief that the Red strategy will be chosen by one's opponent in 
our Baseline Experiment 1. These differences are presented, subject-by-subject, 
for the first, second, and third twenty-round segments of each experiment. That 
is, we divide the data set into three twenty-round periods and for each period 
we present a histogram of the absolute differences between the beliefs subjects 
reported to us (their stated beliefs about the probability of Red being chosen) 
and the fictitious play and y-empirical beliefs we calculated. We then aggregate 
these differences in twenty round segments. Finally, to give some insight as to 
how the two time series differed on the individual level, Figure 2 presents a rep- 
resentative belief time series graph for Player 3 in Experiment 1. While such 
time series certainly vary across subjects, some being less extreme, this figure is 
qualitatively representative of the relationship between stated and fictitious play 
beliefs. 

Looking at Figure 2 first, we see that while fictitious play beliefs soon become 
stable, stated beliefs are quite variable over the full horizon of the experiment. 
This pattern is more than typical. 

With respect to Figure 1, if there is a great deal of agreement between stated 
and fictitious play beliefs, then we would expect that the histogram of the absolute 
value of these differences would be concentrated around 0 with a small variance 

13 The construction of y*-empirical beliefs is equivalent to defining a time series of beliefs in 
a Bayesian manner using Dirichlet priors for the probability that the subject will choose Red. In 
this construction the prior belief is given zero weight and initialized at 0.5 for each subject in the 
experiment. Obviously if one used different (and perhaps positive) initial weights, one might get 
different estimates for y*. In fact it is possible to actually estimate these initial weights and priors for 
each subject separately instead of assuming identical starting points. While we investigated estimating 
these Dirichlet priors from the data, they did not change our results sufficiently to warrant reporting 
the results here. 
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FIGURE 2.-Stated vs. fictitious play beliefs, player 3, Experiment 1. 

around that point and a mode close to 0 as well. If stated and fictitious play 
beliefs tended to differ, then most of the observations would be spread over full 
support of the distribution and represent large positive or negative differences. 

There is little support for the hypothesis that the absolute value of the differ- 
ences between subjects' stated and fictitious play beliefs is zero. To characterize 
these histograms we calculated the mean and median absolute difference as well 
as the interquartile range14 of the distribution for our Baseline Experiment. In 
general, the mean absolute difference between stated and fictitious play beliefs 
of choosing Red varies from a low of 0.242 in rounds 41-60 to a high of 0.254 in 
rounds 21-40 with the median varying from a low of 0.237 in rounds 41-60 to a 
high of 0.254 in rounds 21-40. The lower bounds of the interquartile ranges of 
these distributions range from 0.1554 in rounds 21-40 to 0.2141 in rounds 1-20. 
The fact that the lower endpoints of the interquartile ranges tend to be substan- 
tially above zero indicates that in general stated and fictitious play beliefs differ.15 

14 The interquartile range is the interval between the first and third quartile of a distribution. 
15 To see that these numbers are indeed large, note that similar numbers would be obtained if we 

assumed that stated and fictitious play beliefs were drawn independently and uniformly on [0, 1]. 
In particular, if x and y are two independent random variables uniformly distributed on [0, 1], the 
expectation of the absolute value of their differences, E[x - y], is 0.33 with the lower bound of the 
interquartile range of the distribution being 0.13. 
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To demonstrate that these differences do not change or decrease over time, 
we performed a set of Kolmogorov-Smirnov tests on the data to test whether 
the distribution of these absolute differences changes over time, i.e., whether 
the distribution of absolute differences is the same in the first as in the final 20 
round period. What we find is that one cannot reject the hypothesis that these 
distributions are identical over time. In other words, the distribution of absolute 
differences within the first 20 rounds is not significantly different from that same 
distribution say in the last 20 rounds.16 

Table IIA presents data on the y*-empirical beliefs for each subject in Exper- 
iment 1. 

Note that these y*'s are clustered around 1 with a relatively small variance. 
This is interesting since it would, on the face of it, indicate that fictitious play 
beliefs are about as good as we can get as an approximation to stated beliefs 
using the belief formation model (3). This does not imply that the fit is very good, 
however, as is evidenced by the large sum of squares terms in the table. In fact 
in Figure 2, by choosing y's near 1, y*-empirical beliefs are, in many instances, 
attempting to minimize the distance between empirical and stated beliefs by 
passing a relatively stable straight empirical belief series through the middle of 
a cycling stated belief series. With only one parameter, this may be the best we 
can do but that still may not be very good. 

The paler bars in Figure 1, labeled y*-empirical beliefs, replicate the calcula- 
tions we have performed for fictitious play beliefs using our now more sophisti- 
cated y*-empirical belief measure. While there is a closer relationship between 
y*-empirical and stated beliefs than there was between fictitious play and stated 
beliefs, qualitatively all of the conclusions stated before carry through here. For 
example, the histograms of absolute differences in Figure 1 show the exact same 
features as those for empirical beliefs, and the Kolmogorov-Smirnov test, run 
to investigate whether there was a tendency for the differences between stated 
and y*-empirical beliefs to converge over time, could also detect no significant 
difference between any two twenty-round distributions in any experiment. 

In short, as these descriptive statistics indicate, stated and fictitious play beliefs 
show a great tendency to differ within each of our three experiments and these 
differences show no tendency to diminish as the experiment progresses over its 
60 round horizon. 

Even if fictitious play beliefs are a poor proxy for true or stated beliefs, how- 
ever, it does not mean that fictitious play beliefs are not a useful model since 
operationally all that matters is that the two sets of beliefs prescribe the same 
best-response action at each point (or most points) in time. In the 2 x 2 games 
used in our experiments this might be quite likely since, as we stated above, there 
are broad ranges of beliefs over which the same best response action is prescribed 
so there is a great deal of room available for fictitious play and stated beliefs to 

16 In the results below, D is the calculated test statistic defined by the Kolmogorov-Smirnov test. 
Critical value for D at the 5% level is 8. 

Stated vs. empitical: Experiment 1, rounds 1-20 vs. rounds 40-60, D = 7. 
Stated vs. y*-einpirical: Experiment 1, rounds 1-20 vs. rounds 40-60, D = 7. 
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TABLE II 

A. Calculated y*, Experiment 1 
Player y Min SSQ Player y Min SSQ 

1 0.751 3.676 15 1.946 5.125 
2 1.034 1.925 16 1.152 6.553 
3 0.873 11.066 17 0.556 11.450 
4 0.972 4.447 18 1.012 4.201 
5 0.948 9.992 19 1.012 0.653 
6 1.926 8.376 20 1.029 2.342 
7 1.238 4.071 21 1.367 0.884 
8 1.066 3.919 22 1.400 6.434 
9 0.994 3.286 23 1.114 1.295 

10 2.754 4.181 24 0.933 3.656 
11 1.124 11.738 25 0.981 4.319 
12 1.430 4.485 26 0.854 3.987 
13 1.009 1.976 27 1.402 10.978 
14 1.085 1.856 28 1.085 8.793 

B. Estimated 9, Experiments 1 and 2 
Player 9 [Exp. 1] 9 [Exp. 2] Player 9 [Exp. 1] 9 [Exp. 2] 

1 0.847 -0.662 15 -0.282 -0.447 
2 -1.063 0.536 16 -0.140 0.435 
3 -0.479 0.064 17 -0.274 16.3 
4 -0.171 0.649 18 0.998 -1.11 
5 -0.902 0.067 19 0.400 0.927 
6 0.358 0.891 20 -0.365 -0.221 
7 0.959 0.320 21 1.468 -0.465 
8 -0.546 0.816 22 0.232 0.605 
9 0.404 0.808 23 0.679 0.967 

10 -0.519 0.998 24 0.040 -0.275 
11 -0.803 0.830 25 0.392 -0.451 
12 -0.846 0.036 26 0.445 -0.582 
13 0.019 0.570 27 -0.530 
14 0.068 -0.889 28 -0.686 

differ and yet prescribe the same action. For example, in all of our experiments, 
any belief on the part of the row player that their opponents are likely to use 
the Green strategy with a probability greater than 0.40 will lead them to choose 
Green as a best response. For column players, just the opposite is true. Any belief 
that the row player will use Green with a probability greater than .4 will lead the 
column player to choose Red with probability 1. Hence, if both stated and fic- 
titious play beliefs spend the majority of their time in appropriate regions, then 
no matter how different they might be, they would be observationally equivalent 
with respect to prescribed actions. 

This conjecture is easily tested on the individual level by taking the time series 
of best responses to fictitious play beliefs and comparing it to that predicted as 
best responses to the time series of stated beliefs. We do this by constructing a 
"counting" index defined as follows. In each round of each experiment there are 
N subjects. Each subject in each round has a stated belief and a fictitious play 
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belief. In addition, if they are maximizers, they would have a best response to 
those beliefs that, except when they hold equilibrium beliefs, prescribes a pure 
strategy. From these N subjects count in each period the number of subjects 
whose prescribed best response under fictitious play beliefs is the same as that 
under their stated belief. Hence, if fictitious play and stated beliefs were strate- 
gically equivalent, they would prescribe the same actions in each period and we 
should observe all N subjects choosing the same action. If the beliefs always 
prescribed different best responses, our index should be zero. In particular, our 
index is a measure of how close the best response prescriptions of the two time 
series of beliefs are. 

In Figure 3 we plot our index, the fraction of agreements between the best 
responses to these different beliefs, period by period for Experiment 1. 

Looking at the line describing the difference between prescribed best responses 
for fictitious play and stated beliefs, there is some similarity between the pre- 
scribed best responses of all of our belief time series. On average in any period 
the stated and fictitious play beliefs prescribe the same behavior approximately 
65% of the time in Experiment 1, and therefore different behavior 35% of the 
time. In Figure 3 there is also no tendency for this difference to disappear as 
time goes on so that there does not appear to be much learning over time. 

0.9 

0.8 . 

0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~10 
0 7- 

C,0 *,C* 

a. 

0.5 

0 .4 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
_ 0 Cb ) o Q C N e1 X _ I 0 C Q C N e1 0 

_ _ _ N CN CN Cn) C~) C v v LO L LO 

Round 
Stated-Fictitious Play 

------ Stated-Gamma* Empirical 

FIGURE 3.- Experiment 1: Agreement of best responses: stated vs. fictitious play and stated vs. 
y* empirical. 
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TABLE III 

CORRESPONDENCE BETWEEN ACTIONS AND BEST RESPONSE PRESCRIPTIONS 

Experiment 1 
Cournot Fictitious Play Stated Total None All 

Cournot 92 132 238 462 117 472 
Fictitious Play 132 67 260 459 
Stated 238 260 302 800 

Finally, as Figure 3 shows, using y*-empirical beliefs does not change the cor- 
respondence between the prescribed best response to stated and y*-empirical 
beliefs. 

It is important to point out, however, that the correspondence we have been 
talking about is merely a correspondence in the prescriptions of a theory that 
may or may not be revealed in the actual behavior of subjects. Nothing thus far 
has been said about actual behavior. This prompts our second question. 

3.1.2. Question 2: If subjects best respond, what is it that they best respond to? 

To investigate the best response behavior of subjects let us perform the follow- 
ing exercise. Given fictitious play, stated, and Cournot beliefs, we can predict, for 
any individual and any time during the experiment, what his or her best response 
should be to each of these. Hence, we can count the number of times the strategy 
choices of our subjects were consistent with the best responses dictated by these 
different beliefs. When the chosen strategy of the subjects is consistent with two 
or even three beliefs (or none) we count them separately. 

The results of this exercise are presented in Table III, which presents calcula- 
tions of Experiment 1. 

In this table we have placed Cournot, fictitious play, and stated beliefs along 
the first three rows and columns."7 Any cell in the matrix presents the number of 

17 Later in this paper we will estimate a set of geometrically declining weights with which to define 
historical beliefs in which an estimated parameter 9 defines the weights with which subjects are 
presumed to treat previous data. Under fictitious play beliefs, these weights are all equal to one. 
If we were to replicate Table III using these 9-beliefs, we get qualitatively identical results-people 
tend to best respond to their stated beliefs. 

CORRESPONDENCE BETWEEN ACTIONS AND BEST RESPONSE 
PRESCRIPTIONS EXPERIMENT 1 (9-BELIEFS) 

Courinot -9-Beliefs Stated Total None All 

Cournot 34 190 40 264 168 670 
9-Beliefs 190 16 79 285 NA NA 
Stated 40 79 483 602 NA NA 

As you can see, stated beliefs are still the most salient beliefs when it comes to best response 
behavior. Note however, that 9-beliefs are substitutes for Cournot beliefs in the sense that they both 
predict the same best responses often. This is because for many subjects 9 takes on a value near 
zero, which defines Cournot beliefs. 
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times that the actions of subjects were consistent with the best response suggested 
by one of these belief notions either alone or in conjunction with other beliefs. 
For example, along the diagonal of the initial 3 x 3 matrix, i.e. the cells (Cournot, 
Cournot), (fictitious play, fictitious play) and (stated, stated), we present the 
number of times that the strategy chosen was consistent with that prescribed by 
one and only one belief notion. Hence in the (Cournot, Cournot) cell of the table 
there were 92 instances in which the observed behavior of subjects was consistent 
only with the best response dictated by Cournot beliefs while in the (fictitious 
play, fictitious play) cell there were 67 instances where behavior was consistent 
with only best responses to fictitious play beliefs. The off-diagonal entries, such as 
(Cournot, stated) indicate when observed behavior was consistent simultaneously 
with the best response prescriptions of two belief notions (in this case Cournot 
and stated). It would also be possible for a pure strategy to correspond to a best 
response to all (resp., none) of the three beliefs if, for example, the subject chose 
Green when all beliefs simultaneously indicated that Green (resp., Red) would 
be best. 

Note that when subjects do best respond, they are much more likely to best 
respond to their stated beliefs, either in isolation or jointly with some other belief. 
For example, subjects best responded to their stated beliefs 800 times while best 
responding to their fictitious play and Cournot beliefs only 459 and 462 times 
respectively. It is rather remarkable that in Experiment 1, while they best respond 
to their stated beliefs alone 302 times, they do so with respect to their Cournot 
and fictitious play beliefs only 92 and 67 times respectively. The total number 
of data points for experiment 1 is 1680 (28 subjects x 60 rounds). If we add 
the 472 data points that can be explained by all three belief learning models, we 
conclude that 1272 or 75% of the data is explained by the stated beliefs model.18 
The equivalent percentages for the fictitious play and Cournot models are both 
approximately 55%. 

In conclusion, it would appear that stated beliefs are far more likely than 
Cournot or fictitious play beliefs to be the beliefs to which subjects best respond. 
This result, to some extent, tends to validate our beliefs elicitation procedure 
since it would appear that the beliefs we had subjects report to us were ones that 
they acted upon when money was on the line in the experiment. This finding, we 
feel, is important if such scoring rules are to be used in the future in experiments. 

3.1.3. How Well Do Stated Beliefs Succeed in Predicting Opponent's Play? 

Finally, one can ask whether stated beliefs were "better" than fictitious-play 
beliefs in the sense of predicting the actions of one's opponent better. More 
precisely, since our elicitation method rewards subjects for the accuracy of their 
predictions, we can ask if subjects earned more money reporting their stated 
beliefs than they would have earned had they simply reported their fictitious 

18 Again we point out that if choices were made randomly they would be consistent with best 
responses to stated beliefs 50% of the time. 
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play beliefs at each point in time. Interestingly, in Experiments 1 and 3, where 
we elicit beliefs, the answer is no. This difference, however, is small although 
statistically significant.19 On average a subject's fictitious play beliefs seem to 
serve as a better predictor of the actions of his or her opponent than do his 
or her stated beliefs. For example, in Experiment 1 (resp. Experiment 3) the 
mean payoff that subject's received from their stated beliefs was $4.26 (resp. 
$4.16) while if they had instead offered their fictitious play beliefs, they would 
have earned $4.43 ($4.47). In addition, in a matched-pair comparison of subjects' 
payoffs, in Experiment 1 (resp. Experiment 3) only 11 (resp. 8) subjects out of 
28 received a higher payoff after using their stated beliefs than they would have 
received if they had reported their fictitious play beliefs. 

It is important to point out that there is no contradiction between our claim 
that subjects use their stated beliefs as the basis of their behavior (either by 
choosing a pure best response or a "smooth" one as will be true in our logistic 
models below) and the fact that fictitious play beliefs are, on average, more 
accurate at predicting opponents' actions. Remember the goodness of fit of a 
model measures how well the model predicts a subject's own actions and not that 
of his or her opponent. 

What may be puzzling is why, if there exist other beliefs which are more accu- 
rate, do our subjects persist in using their stated beliefs. There are many possible 
explanations for this puzzle. One explanation for the puzzle is that subjects may 
not find fictitious play beliefs salient. There are many possible forecasting rules 
that subjects could possibly use, and fictitious play is but one of them. Subjects 
may simply not be focussing on those beliefs. Even if subjects are cognizant of 
the fictitious play forecasting rule, they may believe they can do better-they may 
follow "hunches" that make their beliefs move all over the place, thinking that 
they are smarter than simple fictitious play. 

One other possibility is that players use some theory, unbeknownst to us, to 
choose actions and then announce beliefs to justify those actions-actions there- 
fore lead and determine beliefs, as opposed to the other way around as modeled 
in economics.20 Such beliefs would be good models of own behavior but could be 
poor predictors of opponents' behavior. Of course, if the theoly that people use 
is fictitious play prediction combined with best response behavior, then we have 
data that casts doubt on this hypothesis. For if indeed subjects are focussing on 
fictitious play and using stated beliefs to justify their actions, then we should find 
that their chosen actions are best responses to fictitious play beliefs and stated 
beliefs. Our Table III indicates that this is not the case. There are a large number 
of times when actions are best responses to stated and not fictitious play beliefs. 

Our next explanations for this puzzle involve the scoring rule we use to eval- 
uate forecasts. We could score a forecasting rule by asking how well it would 

19 A two-sample Wilcoxon rank-sum test found a significant (5%) difference between these payoff 
samples for Experiment 1 (z = -3.93, p-value = 0.0001) and also for Experiment 3 (z = -2.25, 
p-value = 0.024). 

20 We thank a referee and the associate editor for this insight. 



BELIEF LEARNING 987 

perform in the repeated stage game against the realized actions of the opponent 
if one chose actions that are best responses given the forecasts. That is, we deter- 
mine for the given forecasting rule, the average stage game payoff to the player 
conditional on the realized actions of the opponent and assuming best response 
behavior of the player. Using this scoring rule, we again find that stated beliefs 
do better than fictitious play beliefs. In Experiment 1 (resp. Experiment 3) the 
mean payoff (per round and per subject using the units of the stage game pay- 
off matrix) that would be received using subjects' stated beliefs was $4.19 (resp. 
$4.11) while if they had instead used their fictitious play beliefs, they would 
have earned $4.15 ($4.06). In addition, in a matched-pair comparison of subjects' 
payoffs, in Experiment 1 (resp. Experiment 3) 15 (resp. 17) out of 28 subjects 
received a higher payoff after using their stated beliefs than they would have if 
they had used their fictitious play beliefs. 

Finally, we stress that both belief processes, stated and fictitious play beliefs, 
really fit about as well, and indeed the difference we recorded may have a lot to 
do with the statistical notion we use to evaluate the goodness-of-fit. Recall that 
the rule we used to judge the accuracy of our predictions is the payoff in the 
prediction game, defined via (1) and (2). Note that it is quadratic and concave 
in the forecasts, and hence punishes variability in forecasts. We have already 
indicated, however, that in our data stated beliefs are far more variable while 
fictitious play beliefs tend to settle down. When we change our scoring rule from 
the quadratic one used in equations (1) and (2) to a linear scoring rule (equal to 
that in (1) and (2) with the squares removed), we indeed find that stated beliefs 
now do better in predicting than fictitious play.21 

3.1.4. Qutestion 3: If subject behavior can best be described by a logistic belief 
learning model, which beliefs provide the best fit for our data? 

Our question here differs from that asked in Question 2 since there we were 
interested only in best response choices and predictions while here we are inter- 
ested in which of the beliefs we have, when employed in an appropriate discrete 
choice model of behavior, best explains the choices of our subjects. In such a 
model, the best response function is a continuous function of beliefs and pre- 
scribes a probability with which a subject should choose a given pure strategy 
rather than, as is true in deterministic fictitious play, having a point of disconti- 
nuity at which pure strategy prescriptions change. We will actually consider the 
model where, at time period t, the probability that any subject, i, chooses the Red 
strategy (in a 2 x 2 game with a Red and a Green strategy available) is a func- 
tion of the expected payoff difference between these two strategies. To calculate 

21 With the linear scoring rule we find that in Experiment 1 (resp. Experiment 3) the mean payoff 
that subject's received from their Stated beliefs was $3.27 (resp. $3.24) while if they had instead 
offered their fictitious play beliefs, they would have earned $3.08 ($3.15). Furthermore, using a linear 
scoring rule in a matched-pair comparison of subjects payoffs, in Experiment 1 (resp. Experiment 3) 
we now have 18 (resp. 13) out of 28 subjects who received a higher payoff after using their stated 
beliefs than they would have received if they had reported their fictitious play beliefs; these numbers 
were 11 (resp. 8) in the quadratic scoring rule case. 
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such expected payoffs we must use some set of beliefs and in our experiments 
we have at our disposal a number of different ones from which to choose. 

After we have settled on the beliefs we expect to use, we must choose some 
form for the behavior rule. In our analysis below we will use the frequently 
employed logistic function presented as: 

e0o+01 (E(w)) 
Probability of Red in period t = 

1 +e0o+0 ( 

eIo+?1 (E(CT)) 
Probability of Green in period t= 1 - 

(EWd))' 
1 +ePo)+Pl(E 1r)v 

where E(7f), is the expected payoff difference to be derived from using the 
Red strategy instead of the Green strategy in period t given the beliefs that the 
subjects hold at that time, and go and 01 are constants to be estimated. When 
fictitious play beliefs are used to compute the expected payoff differences in this 
function, we obtain what Fudenberg and Levine (1998) call "smooth fictitious 
play." 

We estimate five logit models, each run on individual outcome observation data 
generated by Experiment 1. These models are estimated on the individual level 
as well as on the aggregate level using pooled data. These differ only according 
to the belief formation process we posit for the subjects. In model 1, we use the 
stated beliefs of subjects to calculate expected payoffs while in model 2 we use 
fictitious play beliefs. In model 3 we estimate what we will call the jy-empirical 
beliefs model where the y's themselves are estimated using maximum likelihood 
techniques simultaneously with go and 11. Model 4 uses Cournot beliefs. Finally, 
in model 5 we use our y*-empirical beliefs (as defined in Section 2.3) as our 
belief proxy. 

All of these models, 1-5, were estimated individual by individual. In addition, 
we have estimated a set of aggregate regressions, one for each experiment, using 
the same specification along with dummies to represent the fixed effects present 
across individuals. Table IV presents the estimates of our aggregate logit models. 
In this table we present the number of observations, the estimated go, I3 coef- 
ficients (in model 3 the maximum likelihood estimates of -y are also presented), 
along with the standard errors of the estimates and their significance levels for 
each model and each experiment. In addition we present for each model the 
maximized likelihood. 

Several things are of note in Table IV. First, in all regressions the 01 coefficient 
was positive and significant at least at the 5% level. Obviously, we expected the 
positive sign since the model is predicated on the notion that strategies expected 
to yield higher payoffs should be used more often. The constant term was pos- 
itive in all models and significant in four out of the five models (all except the 
stated belief model). The estimates of the -y parameter (i.e., -)) were statistically 
significant (5%) and had an estimated value of 0.6098. 

Finally, at the more micro level, it is interesting to note how different the 'y's 
estimated in our individual model 3 regressions are from those calculated earlier 
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TABLE IV 

REGRESSION RESULTS 

Experimenit I 
Std. Error Std. Error Std. Error Mean Log 

Model go pi (Prob): go (Prob): 1 9 (Prob) Obs Likelilhood 

Model 1 0.0753 0.5672 0.0610 0.0388 NA NA 1680 -0.6154 
(0.1084) (0.0000) 

Model 2 0.1049 0.3000 0.0522 0.0605 NA NA 1680 -0.6841 
(0.0222) (0.0000) 

Model 3 0.0892 0.2017 0.0498 0.0516 0.6098 0.1547 1680 -0.6831 
(0.0367) (0.0000) (0.0000) 

Model 4 0.0943 0.0912 0.0520 0.0199 NA NA 1680 -0.6854 
(0.0348) (0.0000) 

Model 5 0.0967 0.2686 0.0492 0.0544 NA NA 1680 -0.6844 
(0.0326) (0.0000) 

when we defined our y*-empirical beliefs. These y's were presented in tabular 
form in Table IIB. 

Looking at Table IIB notice how dramatic the difference between the esti- 
mated y's of model 3 and our calculated -y*'s is. For example, every y that was 
calculated from our y*-empirical series is greater than its counterpart estimated 
in model 3. A Wilcoxon two-tailed test indicates that these distributions are dif- 
ferent at the 1% level.22 Further, while the y*-empirical estimates are centered 
around 1, those estimated from model 3 tend to be centered around 0 with 9 of 
the 28 being negative.23 

We consider this comparison important since it demonstrates exactly how far 
off parameter estimates can be when we attempt to use maximum likelihood 
techniques on data constructed from observable proxies for unobservable data 
(as most economic data are). More precisely, standard empirical analysis as con- 
ducted by economists is most like our model 3 where y is estimated using dis- 
crete (0-1) data using empirical proxies for unobserved variables. Because we 
are able to observe beliefs, we can calculate -y directly by finding the 'y that best 
fits our stated belief series (our y*-empirical beliefs). Hence, this paper offers a 
controlled experiment enabling us to measure how far off economists and policy 
makers may be when they are forced to use empirical proxies for unobservable 
variables. Because these differences are so dramatic in our work here, we take 
these results as a warning urging us to be careful when we too quickly accept 
parameter estimates obtained in that manner. 

22 T = 0, z = -4.622, p(z) < .00005, where T is the test statistic of the Wilcoxon test. z is a 
transformation of T with a standard normal distribution. 

23 These results are strikingly similar to those of Cheung and Friedman (1997) in their estimates 
of y. 
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FIGURE 4.-Mean cioss-subject mean squared deviation, Experiment 1. 

3.1.5. Model Selection among Logistic Models 

We now select among models 1-5 of the previous section in terms of their 
goodness of fit. We will proceed in two ways. First we calculate what we will 
call a Mean Cross-Subject Mean Squared Deviation (MCSMSD) goodness-of-fit 
measure for each round of the experiment and compare them model-by-model 
to see which model fits the data best. The results of this exercise are presented 
in Figure 4. 

Our second procedure compares the goodness of fit of these models by per- 
forming a set of model selection tests on our aggregate regressions, which we 
will do shortly. 

To explain our first procedure more completely, consider the following: For 
each individual and for each of our logit models (i.e. stated, fictitious play, '5- 
empirical, Cournot, y*-empirical), we have an estimated24 ,8 and ,lS coefficient. 
Hence, for any round if we were to plug one of our belief measures into the 
logit equation, we would get a predicted probability of Red (and Green) for that 
round. This predicted probability vector can be compared to the actual {O, 1} 
choice vector made in that round to generate a squared deviation (SD) score for 
that subject in that round. If in any round we average these SD scores across the 

24 j7 iS estimated jointly with :0 and I:l. 
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K subjects in the experiment we get a mean cross subject MSD score (MCSMSD) 
for round t defined as follows: 

i K 
i i2 

MCSMSDt = K (Pt-at 
Ki=:1 

where pt is the predicted probability of choosing Red for subject i in round t and 
a' is i's actual choice (equal to 1 if Red is chosen and 0 if Green is chosen). For 
any model we estimated we can define 60 such MCSMSD's, one for each round 
of the experiment. Figure 4 presents these scores for Experiment 1. Our stated 
belief model clearly outperforms all of the other models. 

We now select among models 1-5 of the previous section in terms of their 
goodness of fit by running a set of maximum likelihood ratio tests on our aggre- 
gate regressions to test if, pairwise, any of these models fit the data better than 
any others. Because our models are not nested in a parametric sense, however, 
we cannot employ the classical maximum likelihood ratio tests. Rather, we use a 
test of Vuong (1989) for non-nested models. As Vuong (1989) demonstrates, for 
any two such models, f and g, with maximized log likelihoods log 5Yf and log 5Eg 

and n observations, the test statistic 

[Y log Yf-L log 5g-k(f, g)] 

X[L(log_yf -log 5g)2] 

under the null hypothesis that models f and g are identical, tends asymptotically 
in distribution to a standard normal random variable N(0, 1). In the expression 
for T above, k(f, g) = ((p72) log n - (q/2) log n) (where p is the number of 
parameters in model f and q is the number of parameters in model g) is a 
correction factor for models with different numbers of parameters.25 The results 
of these tests are presented in Table V. 

In this table each entry presents the test statistic (asymptotically a standard 
normal random variable; see Vuong (1989)) used to test the null hypothesis that 
there is no difference in the goodness of fit between any two of our five models. 
For example, in Table V the entry in the M1-M2 cell indicates the results of the 
pairwise test of the hypothesis that there was no difference between the goodness 
of fit of the stated belief (MI) and fictitious play (M2) models. Test statistic 
values between -1.96 and +1.96 would indicate failure to reject at the 5% level 
while values greater than 1.96 would indicate that model MI fits the data better 
than M2. A value less than -1.96 indicates just the opposite; M2 provides a 
better fit than MI. 

Table V confirms, on the aggregate level, that the stated belief model, model 1, 
outperforms all other models and does so significantly at least at the 5% level. 
In addition, none of the other models distinguish themselves from each other in 

25 We run these tests on the aggregate regressions since we need to make binary comparisons in 
these tests and this would not be feasible on individual regressions since there are 76 of them in total. 
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TABLE V 

MODEL SELECTION TESTS 

Experiment 1 
Model 1 Model 2 Model 3 Model 4 Model 5 

Model 1 7.258 7.253 7.056 7.560 
Model 2 0.422 0.269 0.185 
Model 3 -0.107 -0.282 
Model 4 -0.178 

a statistically significant manner. This result once again affirms our claim that if 
belief learning is to provide a good guide to the behavior of laboratory subjects, 
one is going to have to be careful and get them to reveal their true beliefs. Using 
empirical proxies can lead one astray. 

3.1.6. Robustness: Experiments 2 and 3 

One could argue that we were so successful in finding stated beliefs to be 
important because our elicitation procedure focused the attention of our subjects 
on these beliefs and this led them to use them in their best response behav- 
ior. Hence, it seems natural to re-run our experiments without the use of belief 
elicitation and see if, under these conditions, our subjects focused more success- 
fully on their empirical beliefs. Similarly, it can be argued that the reason why 
the stated beliefs of our subjects varied so much from period to period was that 
they were being matched with the same opponent in each round and hence were 
attempting to outguess what he or she was doing. If instead we had randomly 
matched subjects after each round of the experiment, their beliefs might be more 
stable and more like empirical or fictitious-play beliefs. In fact, it might even be 
argued that fictitious play beliefs make sense here since taking the average of 
one's experience in the experiment at any point in time is equivalent to taking a 
sample of the behavior of the population one is playing against and this might 
be a relevant statistic against which to best respond. 

These considerations led us to run Experiments 2 and 3 where we ask two 
further questions. 

Question 4: When beliefs are not elicited, does subject behavior change and 
do standard fictitious play and empirical belief models fit the data better? 

Question 5: When subjects are randomly matched, are their beliefs less variable 
and do they then use their more stable fictitious-play beliefs as the basis upon 
which to best reply? 

Let us answer these questions one at a time. 

3.1.7. Question 4: When beliefs are not elicited, does subject behavior change and 
do standard fictitious play and empirical belief models fit the data better? 

We will answer Question 4 in a number of ways. First we look to see if subjects 
in these two experiments are using history differently in forming their beliefs by 
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looking at the distribution of 's estimated in both experiments. These 's give an 
insight into how history is weighted in forming beliefs. If there is a big change in 
the estimated 's between these two experiments we might suspect that subjects 
are viewing history differently when their beliefs are not elicited. 

As a note of caution, however, remember that ^-beliefs are not directly mea- 
surable beliefs like our other measures, i.e., stated, Cournot, fictitious-play, etc., 
but rather the result of a maximum likelihood estimation where two other param- 
eters, go and ,1, are simultaneously estimated. Hence, the beliefs they gen- 
erate are not naturally occurring beliefs but part of an estimation procedure 
where stochastic best-response behavior is simultaneously being estimated and 
the value of j is being traded off against those of go and f,3 in an effort to fit 
the data. 

The estimated 's for our experiment were presented in Table IIB. There 
are not dramatic differences between the estimated 's for Experiments 1 and 
2. While the mean j for Experiment 1 is -.0186 (standard deviation = 0.635) 
it is 0.195 (standard deviation 0.653) for Experiment 2.26 The hypothesis that 
these samples come from populations that have the same distribution cannot be 
rejected at the 5% level by a Kolmogorov-Smirnov test (p = 0.169). 

Table VIA shows the best response frequencies of subjects using data from 
the no-elicitation experiments (Experiment 2) along with those presented earlier, 
which show the best response frequencies from the experiments where beliefs 
were elicited (Experiments 1). If elicitation was responsible for focusing atten- 
tion on stated beliefs, then when no elicitation was performed (as in Experi- 
ment 2) we would expect that subjects would use their fictitious-play beliefs more 
frequently when best responding than they did with elicitation (Experiment 1). 
Obviously, since in Experiment 2 there are no stated beliefs, they are eliminated 
from Table VIA where we concentrate only on the use of fictitious-play and 
Cournot beliefs. 

From this table, in Experiments 1 and 2, we conclude that eliciting beliefs did 
not have a major impact on the subject's use of fictitious-play beliefs in best 
responding. While fictitious play did appear to be focused on more as a source of 
best-responding in the no-elicitation experiment, in qualitative and quantitative 
terms, the difference is small. For example, the number of times fictitious-play 
beliefs and only fictitious play beliefs explained best responses was virtually the 
same in both experiments (336 versus 325). Furthermore, while Cournot beliefs 
(either by themselves or in conjunction with fictitious-play beliefs) served as the 
basis of best responses 941 times in Experiment 2, they did so 934 times in Exper- 
iment 1. Finally, while fictitious-play beliefs (either alone or in conjunction with 
Cournot beliefs) served as the basis of best responses 993 times in Experiment 
2, they did so 928 times in Experiment 1. Despite these statistics, however, it is 

26 These calculations were done with the elimination of observation 17 in Experiment 2, whose 
value of 16.3 was a clear outlier. 
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TABLE VI 

BEST RESPONSES-FICTITIOUS PLAY, COURNOT, AND 7 BELIEFS: 
EXPERIMENTS 1 AND 2' 

A. Fictitiotus Play and Coturnot Beliefs: Experiment 2 (Experiment 1) 
Cotirnot Fictitiotus Play Total None All 

Cournot 284 (331) 657 (603) 941 (934) 403 (421) 657 (603) 
17% (20%) 39% (36%) 56% (55%) 24% (25%) 39% (36%) 

Fictitious Play 657 (603) 336 (325) 993 (928) 
39% (36%) 20% (19%) 59% (55%) 

B. y and Cournot Beliefs: Experiment 2 (Experiment 1) 
Beliefs Cotirinot Total None All 

Cournot 116 (74) 825 (860) 941 (934) 598 (651) 825 (860) 
825 (860) 141 (95) 966 (955) NA NA 

a Because we only had 1560 observations in Experiment 2, we performed a linear extrapolation of the data to make 
the entries add up to 1680 for each experiment. 

true, that subjects cued more on fictitious-play, rather than Cournot beliefs, in 
Experiment 2 (993 versus 941) than they did in Experiment 1 (928 versus 934) 27 

What is striking about Table VIA is that despite elicitation, the entry pairs 
in the cells of Table VIA appear highly correlated-whenever a cell has a high- 
number entry in Experiment 1 it also has a high-number entry in Experiment 
2. A Spearman's rank correlation coefficient of 0.905, calculated using the entry 
pairs in the nonredundant cells of this matrix (cells CC, FF, CF, Total C, Total 
F, and None) substantiates this observation. We take this to be support for the 
notion that, at least in ordinal terms, eliciting beliefs does not alter the manner 
in which subjects best respond. 

One might suggest that we should use yj and not fictitious-play beliefs in this 
discussion since they allow a more flexible weighting scheme to be used to weigh 
past observations. As Table VIB indicates, a similar analysis done using j beliefs 
in place of fictitious-play beliefs reaches the same conclusions. Note that, since 
's tend to be centered around zero, they substitute for Cournot beliefs when 

examining best-response behavior in the sense that best responses to Cournot and 
j beliefs are highly correlated as the (j, Cournot) entry in Table VIB suggests. 

Still, in total, subjects best responded to their j beliefs 966 times in Experi- 
ment 2 compared to 955 times in Experiment 1 with the same general pattern 
appearing in the other cells of the matrix. 

Our final approach to dealing with Question 4 is to see if the behavior of 
our subjects, as depicted in our fictitious play and ^-empirical logistic belief 
models (models 2 and 3), changes significantly when these models are estimated 

27 A Wilcoxon test run on the sample of times subjects used fictitious play beliefs when best 
responding in Experiments 1 and 2 rejects the hypothesis that these beliefs were used equally often 
in the two experiments and accepts the one-tail alternative that they were used more often in the 
no-elicitation experiment (Z =-2.074, p < .0381). Still, as Table IX indicates, these differences do 
not appear to us to be economically significant. 
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using the data in our no-elicitation experiments. To investigate this question we 
performed two tests. First we pooled all of our observations from Experiments 
1 and 2 (our elicitation and non-elicitation experiments). We then defined a 
dummy variable which takes a value of 0 if the observation comes from the 
elicitation experiment and 1 if it comes from the non-elicitation experiment. This 
dummy variable is then entered as an independent variable and interacted with 
the intercept and slope coefficient in our logit estimation of models 2 and 3. This 
yields the following model: 

ep0+01 (E(,ft ))+02D+03D(E(,ff) 

Probability of Red in period t = 
1 + e0o+01 (E(t I))-/3D-/3D(E(I)) 

where, as before, E(Wrfd), is the expected payoff difference to be derived from 
using the Red strategy instead of the Green strategy in period t given the beliefs 
that the subjects hold at that time, and 03, 31, 132, and /33 are coefficients to be 
estimated. We test the null hypotheses that 132 and 133 independently are equal 
to 0 as well as investigate whether these coefficients are jointly equal to zero. We 
do the latter by estimating the above model with the restriction that /32 = 133 = 0 

and performing a maximum-likelihood ratio test. The results of this estimation 
and the likelihood ratio test are presented in Table VII. 

Note Table VIIA indicates that we can reject the hypothesis that either coeffi- 
cient /32 or 03 is different from 0 at the 5% level of significance using either model 
2 or model 3. Hence, introducing elicitation does not change either the slope 
or intercept terms in the estimation of models 2 or 3. Further, testing the joint 
hypothesis that /32 and /33 equal 0, Table VIIB indicates that for model 3 the 
likelihood-ratio test cannot reject this hypothesis at the 5% level (p = 0.0145) 
while in model 2 we can (p = 0.631). On balance, taking all factors into con- 
sideration, we conclude that moving from an elicitation experiment to a non- 
elicitation experiment as we did in moving from Experiments 1 to 2, does not 

TABLE VII 

THE IMPACT OF ELICITATION 

A. Dummy Variable Test 
Model Exper iments ,Bo PI 02 033 Py 2' 

Model 2 1 and 2 0.105 0.301 0.125 0.128 NA -2191 
(0.053) (0.060) (0.076) (0.091) 

Model 3 1 and 2 0.088 0.243 0.142 0.134 0.786 -2184 
(0.053) (0.050) (0.076) (0.077) (0.075) 

B. Model Restriction Test 
Likelihood Ratio p-value 

Model 2 1 and 2 5.526 0.0631 
Model 3 1 and 2 8.472 0.0145 

Notes: Ntimbers in parentheses are the standard errors of the coefficieint. p-value is the probability that 2' is equial 
to or greater than the indicated valtue given that the restrictions are truie. 
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significantly change the choice behavior of our subjects in the sense that in both 
experiments they process historical observations equivalently. 

3.1.8. Question 5: When subjects are randomly matched, are their beliefs less 
variable and do they then use their more stable fictitious-play beliefs 
as the basis upon which to best reply? 

As Figure 2 indicates, we observed a fair amount of variability in the beliefs of 
our subjects in Experiment 1. This variability might be expected, however, since 
in those experiments subjects were repeatedly matched with the same opponent 
over the entire 60 round horizon of the experiment. If subjects were randomly 
matched, one might expect that this variability would diminish since subjects 
would be "playing against the field" and this should smooth beliefs. To measure 
the volatility of beliefs we calculated the mean of the period-to-period changes 
in beliefs for each subject over their 60 round experience in the experiment. (All 
deviations were measured in absolute values.) This yields 28 such means for our 
Baseline Experiment, Experiment 1, and 28 for the random matching-elicitation 
experiment, Experiment 3 since all of these experiments had 28 subjects each. 
These calculations are presented in Table VIII. 

From Table VIII, there is no solid evidence that beliefs are more volatile 
when subjects are randomly matched. The mean (median) volatilities in Experi- 
ment 1, where no random matching occurred, was 0.28 (0.25), respectively, while 
in Experiment 3, where there was random matching, the mean (median) volatility 
was 0.22 (0.19). While these means and medians indicate that volatility was higher 
in the experiments where matching was not random, the distribution of volatili- 
ties was not significantly different when tested using a Kolmogorov-Smirnov test 
(KS = 0.2143, p = 0.541 for the comparison of the distributions of volatilities in 
Experiment 1 versus Experiment 3). 

At this point in time we have no explanation for why the volatility of beliefs 
did not settle down when subjects were randomly matched. As stated above, in 
the random matching experiments, it would make sense to treat one's opponent 
at any point in time as a time-average of what one has observed in one's own 
experience in the game. In fact, if one postulates that other subjects are using a 
relatively stationary strategy, it might make sense to employ fictitious play beliefs 
that weight all observations equally. This was obviously not what was done. 

Given that the belief volatilities are not dramatically altered by random match- 
ing, we might expect that stated beliefs still form the focus of attention when sub- 
jects go to make best responses. To investigate this question we present Table IX, 
which replicates Table III using data from Experiments 1 and 3. 

What is remarkable here is the fact that the results are so similar. Using a 
random matching protocol does not appear to lead to dramatic differences in 
the best-response behavior of subjects. The correlation between the best replies 
in these two experiments is .9455 and a Spearman rank correlation test indicates 
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TABLE VIII 

MEAN PERIOD-TO-PERIOD ABSOLUTE VALUE OF 
CHANGES IN STATED BELIEFS 

Player Experiment 1 Experiment 3 

1 0.24 0.46 
2 0.10 0.15 
3 0.48 0.19 
4 0.18 0.02 
5 0.62 0.29 
6 0.31 0.18 
7 0.17 0.15 
8 0.25 0.15 
9 0.21 0.25 

10 0.39 0.23 
11 0.77 0.17 
12 0.30 0.12 
13 0.17 0.38 
14 0.18 0.21 
15 0.38 0.16 
16 0.35 0.14 
17 0.41 0.17 
18 0.30 0.14 
19 0.09 0.27 
20 0.15 0.27 
21 0.05 0.09 
22 0.33 0.31 
23 0.13 0.34 
24 0.22 0.41 
25 0.22 0.35 
26 0.24 0.46 
27 0.40 0.07 
28 0.34 0.06 

Mean 0.28 0.22 
Median 0.25 0.19 

TABLE IX 

BEST RESPONSES-RANDOM MATCHING AND REPEATED PLAYa 

Cournot Fictitious Play Stated Total None All 

Cournot 68 (92) 124 (132) 194 (238) 386 (462) 86 (117) 630 (472) 
Fictitious Play 124 (132) 68 (67) 300 (260) 492 (459) 
Stated 194 (238) 300 (260) 210 (302) 704 (800) 

The numbers in parenthesis are the restults of Experiment 1 after eliminating stated beliefs. 
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that this relationship is significant at least at the 5% level (r T 0.9701,p p 
0.0001).28,29 

In summation, there is a very close relationship between the best response 
behavior of subjects who were randomly matched and those who were not. 
Hence, it would appear that the use of our fixed pairing protocol did not have a 
major impact on the behavior of subjects either in the belief formation or their 
best-response behavior given their beliefs. We take these results as a form of 
replication of our earlier results in Experiment 1 since they imply that, given 
equivalent stated beliefs, subjects will behave in an equivalent manner. 

3.2. Comparisons of Learning Models: Question 6 

One of the main implications of this paper is that when one compares repre- 
sentative learning models, one should take pains to compare the best represen- 
tative of each variety. As our work indicates, we feel that a belief learning model 
using elicited beliefs comes closest to the behavior observed by experimental sub- 
jects and, for our data set, is the "best" representative of belief learning models. 

28 We also compared the y's generated by our subjects in Experiment 1, the fixed-pairing elicita- 
tion experiment, with Experiment 3, the random-matching elicitation experiment. We obtain similar 
conclusions. In particular, a Kolmogorov-Smirnov test fails to reject at a 5% level the hypothesis that 
these samples come from populations having the same distribution (p = 0.071). 

Further, a comparison of the sample of y* estimates for subjects in Experiments 1 and 3 indicates 
no differences in these samples using a Wilcoxon signed-rank test at the 5% level (z = -0.615, 
Prob > lzl = 0.5387). 

29 We performed the same dummy variable logit regression exercise as we did above in our section 
on elicitation, this time using a dummy value of 0 if the matching was fixed and 1 if it was random. 
In this regression 01 is the coefficient for the expected payoff difference while /02 is the coefficient 
for the dummy on the constant term with /03 being the coefficient on the slope term. We found the 
following results: 

THE IMPACT OF RANDOM MATCHING 

Dtummy Variable Test 

Model Experiments Po pi 02 03 Y 2 

Model 2 1 and 3 0.105 0.301 0.128 0.424 NA -2240 
(0.048) (0.061) (0.070) (0.102) 

Model 3 1 and 3 0.088 0.237 0.200 0.329 0.763 -2221 
(0.051) (0.048) (0.073) (0.083) (0.063) 

Model Restriction Test 
Likelihood Ratio p-value 

Model 2 1 and 3 23.55 < 0.0001 
Model 3 1 and 3 32.23 < 0.0001 

Notes: Numbers in parentheses are the standard errors of the coefficients. 
p-value is the probability that LR is equal to or greater thani the indicated value given that the restrictions are truLe. 

These results indicate a mixed effect of random matching on behavior. While we can reject the 
null hypothesis that /B2 = /33 = 0 for both model 2 and 3 when comparing Experiments 1 and 3, when 
tested individually, we are not able to reject the hypothesis that /B2 = 0 for model 2 in the comparison 
of Experiments 1 and 3. 



BELIEF LEARNING 999 

Hence, we will endeavor to compare this model (i.e., the logistic belief learn- 
ing model using elicited or stated beliefs) to the reinforcement learning model 
of Roth and Erev (1998) and the seven parameter model of Camerer and Ho 
(1999). 

Such a comparison is made in great detail in Nyarko and Schotter (2000b), but 
we will highlight their results here. In doing this we present two sets of data. First 
we compare the average mean square deviation (MSD) scores of these models; 
MSD is the most frequently used goodness-of-fit metric in the literature.30 That 
is, we estimate the MSD score for each person and each of three different belief 
learning models (the stated belief model (SB), the fictitious play model (FP), and 
the '9-belief model) as well as our two new nonbelief learning models, the EWA 
and the reinforcement models. We would like to stress that for the EWA and 
the reinforcement models, we estimate the parameters subject-by-subject. That 
is, there will be an estimated vector of parameters for each subject. Second, for 
a more detailed description of what lies beneath these means, we present the 
person-by-person scores. 

The results of these comparisons are presented in Tables XA and XB. In 
Table XA the mean MSD scores are presented for each model in Experiments 1 
and 3. These means are taken over all subjects and all rounds of the experiments. 
Table XB presents the person-by-person MSD scores from which these means 
were calculated. 

In Table XA, in terms of the mean MSD scores the stated-belief model eas- 
ily outperforms all of the other models. Disaggregating the data in Table XB 
reveals even stronger support for the stated belief model. For almost all subjects 
the MSD scores for the stated-belief model are lower than they are for any other 
model. For example, in Experiment 1, for 22 of the 28 subjects the stated-belief 
model had MSD scores that dominated the EWA model. An identical compar- 
ison to the reinforcement model demonstrated this was true for 20 of the 28 
subjects. For the random matching experiment (Experiment 3) 17 subjects had 
MSD scores that dominated those of the EWA model while 23 subjects had such 
scores for the reinforcement model. 

30 Selten (1998) has provided axiomatic justification for the use of the MSD score. The MSD 
is convex in the deviations and so it punishes "bold predictions." To the extent that the stated 
beliefs model, which makes relatively bolder predictions, does better than EWA and reinforcement 
in explaining behavior when scored with the MSD metric is, we believe, a strength of our results. The 
POI (percentage of inaccuracies) measure, first used by Roth and Erev (1998), is one which judges all 
models by their deterministic predictions-that action to which the model assigns highest probability 
at each date. The POI is better suited for forecasting rules that make extreme or deterministic 
predictions. It is perhaps therefore not surprising, given our results using MSD scores, that we find 
that the stated beliefs model continues to do comparatively better when the POI metric is used. 
Finally, one could use log likelihoods as a metric to evaluate the models. Again, after calculating 
the log likelihood functions individual-by-individual, we find that the stated beliefs model does better 
(has higher log likelihoods) than the EWA and reinforcement learning model. 
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TABLE X 

A. Mean Individual MSD Scores 
MSD's 

Experiment SB Models Reinforcement 

FP 9 EWA 

1. ( Mean 0.1261 0.2281 0.206 0.198 0.247 
\Std. Dev. 0.079 0.027 0.056 0.025 0.005 

3. ( Mean 0.121 0.198 0.182 0.170 0.235 
\Std. Dev.J 0.075 0.051 0.049 0.050 0.016 

B. Experiment 1: MSD Individual Scores 
Player SB Model Reinforcement 

FP 9 EWA 

1 0.0336 0.1057 0.0649 0.0834 0.2358 
2 0.1464 0.2311 0.2303 0.1523 0.2381 
3 0.1396 0.2439 0.2319 0.1781 0.2468 
4 0.0133 0.2258 0.2309 0.1904 0.2380 
5 0.0277 0.2473 0.0557 0.2008 0.2522 
6 0.0793 0.2348 0.2353 0.2060 0.2406 
7 0.2391 0.2275 0.2259 0.2099 0.2519 
8 0.2464 0.2408 0.2495 0.2134 0.2477 
9 0.0368 0.2423 0.2083 0.2105 0.2472 

10 0.0920 0.2275 0.2034 0.2122 0.2500 
11 0.0726 0.2168 0.0541 0.1989 0.2505 
12 0.0233 0.2110 0.2180 0.2007 0.2505 
13 0.1002 0.2309 0.2076 0.2002 0.2471 
14 0.0832 0.2180 0.2198 0.2016 0.2472 
15 0.1758 0.2327 0.2437 0.2037 0.2495 
16 0.1733 0.2372 0.2409 0.2049 0.2523 
17 0.1164 0.2456 0.2080 0.2052 0.2487 
18 0.2487 0.2218 0.2218 0.2051 0.2489 
19 0.0914 0.2328 0.1676 0.2036 0.2500 
20 0.0000 0.2474 0.2332 0.2049 0.2500 
21 0.2049 0.2488 0.2351 0.2065 0.2526 
22 0.0526 0.2094 0.1906 0.2057 0.2357 
23 0.1120 0.2465 0.2315 0.2065 0.2552 
24 0.2017 0.2495 0.2497 0.2076 0.2517 
25 0.1986 0.2470 0.2426 0.2090 0.2512 
26 0.2450 0.2398 0.2348 0.2095 0.2470 
27 0.2253 0.2150 0.2230 0.2101 0.2398 
28 0.1508 0.2091 0.2137 0.2093 0.2420 

Mean 0.1261 0.2281 0.2061 0.1982 0.2471 
Std. Dev. 0.0794 0.0272 0.0552 0.0255 0.0055 
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TABLE X-Continued 

Experiment 3: Individual MSD Scores 
Player SB Models Reinforcement 

FP EWA 

1 0.0162 0.2194 0.2074 0.2120 0.2471 
2 0.0859 0.1599 0.1224 0.1250 0.2083 
3 0.1882 0.2254 0.1972 0.1980 0.2503 
4 0.2490 0.1679 0.1749 0.1495 0.2467 
5 0.2191 0.1983 0.1980 0.2014 0.2430 
6 0.0333 0.1844 0.1818 0.1639 0.2254 
7 0.1141 0.1179 0.1217 0.1193 0.2142 
8 0.1298 0.2604 0.1365 0.1319 0.2479 
9 0.0360 0.2040 0.1933 0.1940 0.2409 

10 0.1867 0.1917 0.1620 0.1762 0.2386 
11 0.1235 0.2400 0.2383 0.2255 0.2420 
12 0.1955 0.1943 0.1874 0.1696 0.2166 
13 0.0803 0.2272 0.2183 0.2228 0.2422 
14 0.2411 0.2494 0.2222 0.2097 0.2516 
15 0.0932 0.0663 0.0629 0.0609 0.1954 
16 0.0437 0.1150 0.1000 0.1151 0.2174 
17 0.1166 0.1960 0.1743 0.1818 0.2432 
18 0.1120 0.1183 0.1099 0.1171 0.2153 
19 0.2165 0.2396 0.2389 0.0729 0.2511 
20 0.1207 0.2370 0.2324 0.1739 0.2498 
21 0.1578 0.2166 0.1655 0.1627 0.2426 
22 0.1692 0.2461 0.2149 0.1966 0.2486 
23 0.0376 0.2475 0.2484 0.2389 0.2495 
24 0.2430 0.2410 0.2309 0.2460 0.2532 
25 0.0000 0.2322 0.2255 0.2256 0.2438 
26 0.0613 0.2135 0.2207 0.2266 0.2350 
27 0.1089 0.1135 0.1140 0.0924 0.1998 
28 0.0159 0.2213 0.2103 0.1704 0.2330 

Mean 0.1213 0.1980 0.1825 0.1707 0.2354 
Std. Dev. 0.0757 0.0507 0.0494 0.0506 0.0168 

Using a set of binary Wilcoxon matched-pairs signed-rank tests we can easily 
reject the hypothesis that the sample MSD scores calculated from the stated 
belief model come from the same population as those of any other model at the 
5% significance level. 

The picture changes if instead of stated beliefs one uses in the comparisons the 
y-empirical belief learning model (our best performing y-empirical history based 
belief-learning model). In Experiment 1 for only 5 subjects did the jy model dom- 
inate the EWA model. It did so 25 times when compared to the reinforcement 
model, however. For Experiment 2 the results were similar. There were only 9 
subjects for whom the -9 model dominated the EWA model while there were 26 
subjects for whom the -y model dominated the reinforcement model. If there is 
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a second-best learning model it is the EWA model, but it is not consistently the 
second best. 

3.3. A Replication Study: Experiment 4 

Experiment 4 was run to replicate the results of a large number of experiments 
run on games whose Nash equilibrium is unique and mixed. More precisely, 
a number of experiments performed by O'Neill (1987), Rapoport and Boebel 
(1992), and others on games with unique Nash equilibria in mixed strategies 
have demonstrated aggregate behavior over time that approximates, but does 
not exactly replicate, the theoretical predictions of the Nash theory. This means 
that while frequencies appear to converge toward the Nash equilibrium, there is 
enough variation to allow investigators to search for alternative explanations of 
behavior (see McKelvey and Palfrey (1995)). 

In our Experiment 4 there was no elicitation of beliefs and subjects were ran- 
domly matched. These are conditions expected to be more likely to yield behav- 
ior consistent with the one-shot equilibrium of the game being investigated. As 
you remember, in our experimental game we expect at the equilibrium that each 
player will use their Green strategy with probability 0.4 and their Red strategy 
with probability 0.6. As Figure 5 demonstrates, as time progresses the average 
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FIGURE 5.-Cumulative average use of Red for row and column players. 
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use of the Green and Red strategies seems to converge toward equilibrium lev- 
els. We obtain very similar figures with our other treatments.31'32 

While we take the criticisms of looking at aggregate choices offered by Brown 
and Rosenthal (1990) to heart, we present these diagrams solely to confirm that 
our data do have a tendency to converge under the circumstances controlled for 
in Experiment 4. 

4. CONCLUSIONS 

This paper has investigated belief learning. Unlike other investigators who 
have been forced to use observable proxies to approximate unobserved beliefs, 
we have, using a belief elicitation procedure (proper scoring rule), elicited subject 
beliefs directly. As a result we were able to perform a more direct test of the 
proposition that people behave in a manner consistent with belief learning. What 
we find is interesting. 

First to the extent that subjects tend to "belief learn" the beliefs they use 
are the stated beliefs we elicit from them and not the empirical beliefs posited 
by fictitious play or Cournot models. Hence, while we present data that lend 
support to the notion that people behave in a manner consistent with belief 
learning, we must be careful to specify the type of beliefs that must be used as 
inputs to these models. 

Second, we present evidence that the stated beliefs of our subjects differ dra- 
matically, both quantitatively and qualitatively, from the type of empirical beliefs 
usually used as proxies for them. While empirical beliefs, i.e. those beliefs formed 
by counting the frequency with which subjects have used their various strategies 
in the past, tend to generate a fairly stable time series, stated beliefs vary wildly 
from period to period and exhibit no tendency to settle down as the experiment 
progresses. Still, such differences would be inconsequential if they had no impact 
on behavior, i.e., if despite their apparent difference both stated and empirical 
beliefs prescribed the same behavior. We have shown that such is not the case. 

Third, our belief elicitation procedures allow us to examine how far we can be 
led astray when we are forced to infer the value of parameters using observable 
proxies for variables previously thought to be unobservable. By transforming a 
heretofore unobservable into an observable we can see directly how parameter 
estimates change when this new information is introduced. Again, we demon- 
strate that such differences can be dramatic. 

31 In particular, we observe the same tendency of cumulative actions to settle down, with limiting 
average use of RED for each of our experiments indicated below: 

LIMIT AVERAGE USE OF THE ACTION RED 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Row Players 0.52 0.53 0.55 0.57 
Column Players 0.54 0.61 0.63 0.66 

32 The discussion in Section 3.1.7 and footnote 27 indicates that the differences of mean actions in 
each round across experiments are not statistically significant. 
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Fourth, it appears that these results are robust to both the nonrandom match- 
ing and elicitation features of our design. When beliefs are not elicited it does 
not appear that empirical based belief models do a significantly better job of 
explaining the data of those no-elicitation experiments than they do in models 
where beliefs are elicited. 

Finally, we compare our stated belief learning model to two alternative learn- 
ing models, the reinforcement model of Roth and Erev (1998) and the EWA 
model of Camerer and Ho (1999). We demonstrate that the stated beliefs model 
provides a better fit for the data. 
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