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ABSTRACT
Changing patterns and reduction in agricultural land are among the
fundamental problems that impacts food security in developing re-
gions like India. Rapid economic growth coupled with increasing
populations and changes in climatic patterns are among the main
factors impacting availability of agricultural land. On a macro-
scopic scale, due to the lack of good quality data, governments do
not have a complete and clear cut picture of changes in land usage
patterns. In this paper, we present the design of a satellite image an-
alytics engine that we use to perform a detailed analysis of changes
in agricultural land patterns over a 13-year time period (2000-2012)
in West Bengal, India, traditionally considered one of the most fer-
tile areas in the world. Our satellite analytics engine can perform
a fine-grained analysis of macro-granular satellite images (eleva-
tion of 11 km) and classify small portions of land in each image
into different categories: agricultural, developed, forest and water
bodies. Our analytics engine can analyze temporal changes in land
patterns and compute the percentage of change in land under each
category. Based on detailed food production data gathered in col-
laboration with the bureau of statistics of West Bengal, we analyze
the correlations between changes in agricultural land patterns and
corresponding changes in food production (normalized by change
in yield patterns). Our tool can be used at varying levels of spa-
tial granularities ranging from macroscopic analysis at a state level
to fine-grained analysis at sub-district levels. This analytics tool
is targeted for government and non-governmental policy makers to
analyze land pattern changes and correlate them with food security
metrics.

1. INTRODUCTION
Agricultural land availability is undergoing dramatic changes across

the globe. This phenomenon is more rampant in the developing
world where rapid economic growth and increasing population is
resulting in unplanned development. The loss of arable area is es-
timated to be 1-21% in South America and around 18% in Africa
[36]. The major causes identified for this decline are: (1) rapid
urbanization of these countries including industrialization; (2) the
migration of farmers to cities resulting in the sale of farmland for
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non-agricultural development, a trend that has escalated in the past
few years due to rising real estate prices. Loss of arable land has
a direct impact on food security. Most developing regions are also
predominantly agrarian economies and changes in arable land can
significantly impact food production and availability. Apart from
urbanization and industrialization, changes in climatic patterns and
other environmental factors are also resulting in degradation of
farmlands and eventual disappearance. There are reports that Sa-
hara desert is expanding southwards at an alarming rate[9]. Rising
sea levels are increasing salinity of soil and decreasing productivity
of land [18]. In countries like India, unpredictable monsoon is also
harming production and land quality.

Loss of arable land is also a well documented phenomena in de-
veloped regions around the world, especially in North America and
Europe. Unlike developing regions, land usage is well-documented
in most developed regions at fine-grained granularities. For exam-
ple, from 1982 to 2007, more than 23 million acres of agricultural
land was converted to developed land in the USA[4][5] , with each
state losing significant areas of farmland. Similarly, Germany lost
five million acres of its Utilized Agricultural Area (SAU) between
1960 and 2010, a decline of almost 11 percent. France has about
50 percent of its land used for agricultural activities in 2010 and it
is also declining [1]. Most developed countries have traditionally
maintained detailed electronic records to monitor change in land
patterns over 5-10 decades. In contrast, such fine-grained data is
often found lacking in developing regions.

In this paper, we propose the design of an automated satellite
image analytics tool that can leverage publicly available satellite
image data sources to provide a fine-grained longitudinal analy-
sis of changes in land pattern in a given region. Our goal is to
design a data analytics system that can understand the longitudi-
nal relationship between the changes in agricultural land pattern
in a given small geographic area and its corresponding impact on
food production. This paper is specifically contextualized for the
region of West Bengal, traditionally considered one of the most
fertile areas in the world being in the delta of the Gangetic plains.
We used a corpus of satellite images gathered from Google Earth,
which maintains an updated repository of satellite images along
with an archive of older images across the globe. Based on detailed
food production data gathered in collaboration with the bureau of
statistics of West Bengal, we computed the correlations between
the changes in agricultural land patterns and in food production in
these years, at the district level of West Bengal.

The key building block of our analytics tool is a satellite im-
age analysis engine that can analyze potentially noisy satellite im-
ages and provide fine-grained classification of regions within each
image into different categories such as: arable land, water body,
developed land, forest etc. Given historical data about the same lo-



Figure 1: Image of a location in Angola taken in 2003

Figure 2: Image of a location in Angola taken in 2011

cation, the image analysis engine can provide a detailed analysis of
land pattern changes. Figure 1 is an example of a land in Angola
in 2003 and a developed version of the same land in 2011 is shown
in Figure 2. Our engine can detect such changes at different loca-
tion granularities (small region, district, state level etc.). In the case
of West Bengal, we obtained data over a 13 year time period from
2000-2012 and could track land evolution over this entire time pe-
riod. We correlate this land change pattern with food production
data over the same time period gathered by the Bureau of Statis-
tics in the government. This tool can be helpful to policymakers to
monitor the changes in the land pattern and take appropriate steps
if any drastic changes are noticed.

Based on our detailed analysis of satellite data and food produc-
tion data from 2000-2012, we present the following key results in
this paper:

• In the state of West Bengal agricultural land area has declined
by 2%.

• The decline in agricultural land area has demonstrated pos-
itive correlations with rice/wheat production and agriculture
productivity index.

• The loss in arable land was higher in districts closer to urban
and industrial zones.

In this paper, we present the satellite analytics tool and the data
generated by it to analyze food production and security issues. How-
ever, this analytics tool can be used in other contexts as well. This
tool is a general purpose satellite image analytics tool whose end-
goal is to process satellite images from any part of the world and
generate data about distribution of land patterns and how the pat-
tern has changed over the years in that region. The generated data
can be used in any relevant analysis.

2. RELATED WORK

There are two different classes of related works for the work pre-
sented in this paper. There are many works which have focused
on detecting objects, patterns from images. These techniques have
been or can be applied to satellite images. On the other hand there
are various other works which have used satellite images and in-
formation extracted from them to infer different metrics and build
novel applications.

We start with novel applications using satellite images and then
discuss some techniques used in such applications. There are quite
a few applications targeted at disease detection using satellite im-
ages. Ceccato et al [11] used remote sensing technology to monitor
malaria risk. They used high resolution images of Landsat data to
monitor features on earth’ surface. They monitored features, such
as, surface water, vegetation, temperature, humidity which has a
direct impact on outbreaks of disease such as malaria. Safi et al
[8] has a similar approach where they predicting malaria risk using
remote sensing data. They used neural networks and general linear
model to combine precipitation, temperature and vegetation index
obtained from remote sensed data to build a predictive model for
malaria cases. They ran this model for 23 provinces in Afghanistan
and showed good prediction accuracy. Another example of ap-
plying image analysis in public health is the work by Kelly et al
[21]. They used an object based image classification approach to
identify objects within the satellite images that can help in under-
standing various public health issues. Another similar work can be
seen in the paper describing an early warning system for malaria
[32]. Famine detection and prediction is another common applica-
tion that have been targeted using satellite imagery. In a slightly
earlier work, Hutchinson [20] developed an early warning system
for famine in sub-Saharan Africa. This work demonstrated better
efficiency and accuracy of using satellite data in building such sys-
tem compared to datasets from ground sources. In a recent work a
similar approach and data was used to predict famine Uganda [28].
In this work, two main parameters used for famine detection – veg-
etation index and rainfall – were derived from multi-spectral satel-
lite images to characterize crop yield. Related to famine, there are
numerous works that have focused on food security [19][17][22].
Huber et al [19] has argued that early warning systems for food se-
curity can be vastly improved with the help of satellite data. Their
claim is that frequent temporal data on water stress and surface tem-
perature can help in detecting drought early, thus, reducing their
impact on the society.

Deforestation and other environment related issues can also be
well understood from satellite data. Vibrans et al [33] created a
land database of a state in Brazil to determine the remaining land
area covered by Atlantic rain forest. A specific deforestation case
was covered by Rahman et al [30], where they looked the disap-
pearance of mangrove forests, making way for aquaculture. They
used MODES data from NASA’s Terra and Aqua satellites to study
the Mahakam delta mangrove forest in Indonesia between the years
2000 and 2010. Another work focusing on environmental issue us-
ing satellite data is by Diouf et al [13]. There goal was to detect the
concentration of Saharan dusts and sea surface chlorophyll from
satellite data.

There are other works which have analyzed satellite data to infer
various metrics. Example of such an application is using night-time
satellite images to infer poverty in a region [26]. Abelson et al [6]
used satellite image data to identify extremely poor regions using
roof top of buildings as a proxy of poverty. This work has been to
identify poor regions for better cash flow using mobile platforms.
They have shown that the intensity of artificial lights during night
time, as captured in night-time satellite images, has strong corre-
lation with GDP of that region. Dahmani et al [12] used satellite



images to build cartographic database of slums to facilitate better
planning and policies.

On the other hand, there have been many works that has de-
veloped novel techniques for processing satellite images or digital
images in general that can be applied to satellite images as well.
Object detection [25][34] has been a very popular method used to
extract information from satellite images [6]. A typical feature of
satellite images is they are heterogeneous and more continuous in
nature. Within a small area there can be different objects placed
one after the other. Hence, segmentation becomes an important
preprocessing step before any kind of information extraction task.
There are works which have specifically targeted satellite images
for segmentation [10] [29]. There are numerous other works focus-
ing on image segmentation [15] [14] or superpixel extraction [16]
[24] [31][7][35] that can be applied to satellite image analysis as
well .

Based on past works it can be understood that information ex-
tracted from satellite images can be very useful to infer many use-
ful parameters, particularly in public health, environmental issues
and public policy. Such a technique is even more essential when
ground source data – particularly for developing or underdeveloped
regions – are error-prone, irregular and difficult to obtain at regular
intervals.

3. LAND PATTERN ANALYSIS AND FOOD
SECURITY

In this section, we provide a brief context and motivation for the
problem addressed in this paper. We begin by stating the impor-
tance of the problem before providing specifics of the data analysis
study presented in the paper.

Context: Food security is emerging as one of the biggest prob-
lems that human populations may face in the upcoming century
due to growing populations, urbanization and reduction in arable
land. Reduction in arable land is a relatively hard task to reverse
and food statistics around the world clearly indicate that agricul-
tural land patterns are on the decline, and in recent times the rate
has accelerated.

The problem of decrease in agricultural land is particularly an
important question for developing countries which are predomi-
nantly agrarian economies. Given unprecedented population growth,
coupled with only a relatively modest growth in agricultural yields,
any minor changes in land can have catastrophic consequences on
the food security for the population in such countries. While west-
ern countries have relied on large scale imports, developing coun-
tries do not have the economic horsepower to rely on imports for
tackling food deficiencies.

A critical metric that needs to be monitored for food security
in agrarian economies is agricultural land availability. While de-
veloped nations are known to have much more detailed records on
land change patterns, the relative documentation of such data in
developing regions is often lacking due to the lack of fine grained
data. In many developing regions, data is not frequently updated or
not complete. Policy decision-making is often done based on stale
or incomplete data and an important phenomena such as disappear-
ance of arable land often go unnoticed.

Even if policy makers are aware of the decline in arable land, the
second problem is the lack of knowledge of the underlying causes
behind this disappearance. On many occasions, land acquisition
for development is happening illegally [3]. Local authorities are
unaware of this change and at what rate it is happening. Apart from
this, there might be reasons for which land is losing productivity
[27] due to bad agricultural practices or environmental factors. The

exact transformation of agricultural land to what other types can
provide valuable clues to the solution of the problem. For all these
factors, land pattern statistics at regular intervals are essential.

3.1 Satellite Images
Advantage of using satellite images is that they can give a clear

picture of the state of the land. Over the years, the quality of these
images have greatly improved providing rich information about the
surface area of different regions. Processing these images can re-
veal the present status of a region. Moreover, having access to his-
torical images, short and long term changes in a region can be easily
tracked. How historical satellite images can detect changes is ev-
ident from Figure 1 and 2. This images are taken from Angola in
the year 2003 and 2011 respectively. In the 2003 it shows a green
patch of land, probably used for agriculture, with marks of being
converted into developed land. Within 8 years the entire green land
has turned into an urban area. Thus, the sattelite images can have
an important impact in tracking changes in the land pattern.

In addition, satellite images can provide an account of of what
type of changes happened in a region. A piece of agricultural
land disappearing might not always be a very useful observation to
tackle the problem. On the other hand, identifying the exact change
can provide more insights. An existing agricultural land can change
to some other land type – acquired for urban or industrial devel-
opment. Alternatively, due to changing climatic conditions or bad
agricultural practices, the land’s quality has deteriorated and hence,
it is turning into a barren land. Being able to track these changes,
a policy maker can address the situation properly. In the first case,
the solution is to deal with illegal and forcible acquisitions and in
the second case come up with sustainable solution to protect exist-
ing farmlands. In conclusion, these steps can protect agricultural
lands, moreover, ensure food security and stabilize food prices for
long term sustainability.

3.2 West Bengal: A Case Study
In this paper, we contextualize our study of the agricultural land

availability problem for the state of West Bengal in India. West
Bengal lies in the north Indian Gangetic Plains, as a result fertile
alluvial soil is abundant in the state. Hence, agriculture is the pre-
dominant driving force of the economy of the state. Table 1 shows
some facts of the state. The reason we chose West Bengal is due
its relatively smaller area and its dominance in agriculture. Based
on the data presented in Table 1 it is clear that that the economy of
the state is heavily dependent upon agriculture. Agriculture con-
tributes to about 24% [2] of the state’s domestic product and with
such a high percentage of the labor force engaged in agriculture,
it is apparent any decline in agriculture will have a drastic effect
on the state, its economy. This will impact the food security of
the state as well. One of the goal of this paper is to use the tool
to estimate land pattern statistics of West Bengal and observe what
changes have occurred in the last 10 years.

In this paper, we try to analyze the agricultural land availability
problem by building a satellite image analysis tool that can classify
satellite images into various categories. In addition, it can moni-
tor the changes over time and report what is changing and how it
is changing. Subsequently, we use the data produced by the tool
to compare changing land patterns with officially collected govern-
ment data on food production at a district granularity.

4. SATELLITE IMAGE DATA
We created our dataset from the satellite image repository of

Google Earth (GE). GE has freely available satellite images from
across the world, including an archive of historical images. To de-



Table 1: West Bengal at a glance

Area 88,752 sq km
Population (2011) 91,347,736
Population density (2011) 1000/sq. km
Rural population (2011) 72%
Area under agriculture (2012) 5,666,000 h.a.
Labor force engaged in agriculture 67%

velop and test our image analytics tool, we gathered satellite images
from different regions across India and different countries across
Africa. We collected around 8800 images from 7 different coun-
tries in Africa and 5100 images from 2 different states in India. All
these images were captured at an elevation of 11 KM, to make sure
they are not too blurry (if captured from too close to the ground) or
missing details (if captured from a very high elevation). The time
range of these images is between 2000 and 2012. A typical image
is shown in Figure 1.

One of the key challenges in processing the satellite image is the
variability in the quality of images. Google Earth images do not
have consistent quality. Particularly, for older images the quality is
quite poor and blurry. Second, the precision of images presented
by Google Earth can historically vary. Third, in many images the
land area is not visible in some parts due to completely blanked
out images or due to cloud cover. Finally, the background color
across images is not consistent which makes it difficult to classify
land into different categories. For this study, we ignored such noisy
images and built the model assuming the images are clear. For
future work, we intend to build a more robust model to tackle such
noisy images.

5. SATELLITE IMAGE ANALYSIS TOOL
The image analysis tool is aimed at classifying satellite images

into 4 different categories. To design the classifier we used Convo-
lutional Neural Network (CNN) [23]. The network takes an image
as an input and has 4 output nodes for each class to describe the
image. The categories are - Arable, Tree-covered, Water body,
Developed.

We experimented with a variety of standard methods and feature
sets to build the tool. In order to evaluate each method, we split the
data into a training and a cross validation set. We set aside 10% of
the images for cross validation from each individual category. So,
our training set is the combined set of 90% of the images from 7
different African countries and 2 Indian states.

5.1 Preprocessing
A single frame in a satellite image covers a large portion of land

and they typically have more than one category of land. Fig 3 show
a typical satellite image from our dataset and this image has agri-
cultural land, tree-covered areas, as well as water bodies. Thus, ev-
ery image needed to be broken into segments or superpixels, where
each superpixel represents a homogeneous area, potentially belong-
ing to only one of the categories mentioned above. There are many
related works that involve segmenting images and extracting su-
perpixels [16] [24] [7][35], we chose Markov Random Field based
approach [31] to extract the superpixels. In this method the condi-
tional distribution of a pixel is determined by the 8 neighboring pix-
els. A graphical model is constructed where every node is a pixel
and edges are drawn between adjacent pixels. The edge potentials
define how similar they are or whether they belong to the same su-

perpixel or not. Based on some annotated superpixels, the model
learned the edge potentials and based on the learned model, the
superpixels were extracted from the larger image. Figure 3 shows
the resulting superpixels after segmentation. Here, each superpixel
represents a uniform region within the image. We treat these super-
pixels as an atomic unit of the images and are fed into the network
for classification.

5.2 Image Classification
Our dataset essentially consists of segmented superpixels ex-

tracted from satellite images. After the segmentation process and
extracting the superpixels, it is assumed that the superpixels have
one and only one type of land type. Thus, each superpixel can be
classified into one category (i.e. arable, tree-covered, water body or
developed). We experimented with different feature sets and clas-
sification methods to classify these superpixels into one of these
categories. The purpose of these experiments were to identify the
best performing method to achieve our ultimate goal of building a
satellite image classification tool and get an accurate estimate of
land patterns over a geographical region. We employed two clas-
sification methods – support vector machine based method using
a suite of feature sets and a convolutional neural network based
model with implicit feature extraction module. In the rest of the
section, we provide a brief overview of the methods used.

Support Vector Machines (SVM) are designed for binary clas-
sification. However, in our case, we are classifying the images
into 4 classes by combining several binary classifiers using one vs
rest method. We used several image features to experiment with
identify the best performing model. Our features include standard
image features, such as, color histograms, texture etc. We started
with greyscale features, as many of the satellite images have non-
standard color codes. That is, in many images, agricultural land and
water bodies are depicted with similar colors. To test this intuition,
we used RGB color histograms as well. We also considered the
texture of an image, as many images across categories had similar
color distributions, we used a couple of texture based features, such
Grey Level Co-occurrence Matrix (GLCM) and Local Binary Pat-
tern (LBP) features sets. All these different types of features were
extracted from the superpixels and fed into an SVM classifier to
classify each superpixel into a category. The detailed results from
these experiments are discussed in Section 5.4.

The second type of model used to build this tool was Convolu-
tional Neural Networks (CNN). CNNs are multi-layered artificial
neural networks which incorporate both unsupervised feature ex-
traction and classification. A CNN consists of a series of convolu-
tional and pooling layers that perform feature extraction followed
by one or more fully connected layers for the classification. The
inputs of a unit in a convolutional layer come from just a small
rectangular subset of units of the previous layer. In addition, the
nodes of a convolutional layer are grouped in feature maps shar-
ing the same weights. The inputs of each feature map are tiled in
such a way that correspond to overlapping regions of the previous
layer making the aforementioned procedure equivalent to convolu-
tion while the shared weights within each map correspond to the
kernels . The output of convolution passes through an activation
function that produces nonlinearities in an element-wise fashion.
A pooling layer follows which subsamples the previous layer by
aggregating small rectangular subsets of values. Max or mean pool-
ing is applied replacing the input values with the maximum or the
mean value, respectively. A number of fully connected layers fol-
low with the last one having a number of units equal to the number
of classes. This part of the network performs the supervised classi-
fication and takes as input the values of the last pooling layer which



constitute the feature set. For training the CNN a gradient descent
method is applied using back propagation.

However, the input superpixels (Section 5.1) are non-uniform in
terms of dimension and neural networks are usually designed for
fixed size input. Thus, non-overlapping patches of size 32 are ex-
tracted from the inside of each superpixel image. In order to in-
crease the amount of training data and prevent over- fitting we artifi-
cially augment the training patch dataset by using label-preserving
transformations such as flip and rotation as well as the combina-
tions of the two. In total, 16 transformations are used. Then, we
calculate the mean over the training image patches and subtract it
from all the patches of the dataset so the CNN takes as input mean
centered RGB pixel values.

Using the created super-pixel dataset we train a deep CNN with
a six layer architecture. The network has four convolutional layers
with 5 × 5 kernels; the first three layers have 32 kernels while the
last has 64, producing equal number of feature maps. Each con-
volutional layer is followed by a pooling layer with 3 × 3 pooling
regions and stride equal to two; the first one outputs the maximum
value out of each pooling region while the following three use the
average. The last two layers of the network are fully connected with
128 and 7 units, respectively. The output of each hidden neuron was
set to zero with a probability p forcing the network to learn more
robust features for the description of the input regardless of the in-
active neurons. Here, the dropout probability p is set to 0.5. The
softmax function is used so as to normalize the outputs of the last
layer so each output is between zero and one and they all sum up to
one. This way, the output values represent a categorical probability
distribution so a cross-entropy loss function is used to calculate the
error used by gradient descent training. Finally, as far as the weight
learning is concerned, a schema with a decay of the learning rate
along with a momentum coefficient was used. The base learning
rate is set to 0.001 with an exponential decay policy and the mo-
mentum is set to 0.9. The CNN model learns and optimizes the fil-
ters in each layer through the back propagation mechanism. These
learned filters extract important features that uniquely represent the
input image of a homogeneous segment of a satellite image.

However, given the characteristics of the dataset, images belong-
ing to same category can have vastly different feature values. For
example, the color of an arable land can have different shades of
green as well as in many cases shades of brown. Using greyscale
versions of the image cannot capture this variation. Hence, we ex-
perimented with different feature sets and methods to empirically
find the optimum solution to this problem.

5.3 Estimation of Land Pattern
Finally, the trained model can be applied to the satellite images

collected from a region across time to get an estimate of land pat-
terns and changing trends in the pattern in that region. To estimate
the land pattern of a given region, we collect satellite images cov-
ering the entire region based on th elatitude-longitude coordinates
bounding the region. We repeat this image collection scheme for
all the years for which we would like to have the estimate. For
a given year, each superpixel αi is fed into the trained model and
classify it to obtain the category k, which best describes the land
type αi belongs to. This information of individual superpixels can
be aggregated to obtain the land pattern statistics of a region. In
other words, the land pattern statistics can be computed for a year
as,

θyeark =
∑

i α
year
ik∑

α
year
[1:K]

where, αyearik is the total number of superpixels in the image seg-

Figure 3: Segmented Image

ments i which are assigned to the class k. Monitoring θyeark for
different years can give an estimation of how land area under k has
changed over the year.

5.4 Performance
Our dataset contains around 10,000 images across 7 years. Ex-

traction of superpixels resulted in an average 500 segments per im-
age. For the development of tool, we randomly selected 8000 su-
perpixels across all years to train the model and another 2000 as a
cross validation set. These images and superpixels were manually
annotated to create a labeled training and cross-validation set to de-
velop the tool. We experimented with different kinds of feature-set
and computed the accuracy on this cross-validation set. The ac-
curacy is computed as the percentage of the total number of cases
where a superpixel was assigned to the correct cluster compared to
the entire cross validation set.

We compared the CNN based method to several other popular
feature sets used in image classification. Our experiments showed
that the CNN based method had the best performance in the cross-
validation set and we chose to use it for the land analysis study.
Below we present a brief description of all these experiments.

Our first approach was based on using greyscale color histograms
as the features. We ran SVM multi-class classification algorithm
on these features. This method gave very low accuracy of 38.28%.
This is due to the fact that the satellite images had very similar col-
ors for many different objects. Moreover, in greyscale the objects
looked alike and color histograms could not discriminate against
different types of objects (e.g. tree cover, open fields, buildings).
Next we tried a similar approach but with RGB color information
separately instead of converting them to greyscale. This increased
the performance to an accuracy of 51.04%.

Different experiments based on color histograms could only pro-
vide a maximum accuracy of 51.04%. A closer look at the color
distribution of the images reveal that there are not much difference
between the histograms across different categories. On the other
hand, texture of the images are very different for different land
types. Irrespective of colors, farmlands tend to have a smoother
texture compared to other categories. We added Grey Level Co-
occurrence Matrix (GLCM) based features to include the texture of
the images. This method increased the accuracy to 70.93%. Based
on this observation, we experimented with other texture based fea-
ture Local Binary Pattern (LBP) and the color variant of this fea-
ture set, RGB-LBP. Although, with pure LBP the accuracy dropped
to 68.35% but the RGB variant showed improvement with an ac-
curacy of 76.93%. In all these experiments we used SVM based
multi-class classifier to classify the images. Finally, the CNN based
method described in the previous section showed the best perfor-
mance with an accuracy of 89.41%. Table 2 summarizes the per-



Table 2: Accuracy of the tool for different features used

Feature-set Accuracy
Greyscale color histogram 38.28%
RGB color histogram 51.04%
Texture (GLCM) 70.93%
Local Binary Pattern (LBP) 68.35%
LBP + RGB 76.93%
CNN 89.41%

Figure 4: Percentage of arable land per year

formance of the satellite image analysis tool based on different fea-
tures. We performed the rest of the analysis with the CNN based
image analysis tool, given the best performance of the model.

6. LAND PATTERN ANALYSIS OF WEST
BENGAL

After the development of the tool, we applied it to the satellite
images collected from the Indian state of West Bengal. Our goal
was to analyze the variation of agricultural land in that state across
several years. We collected satellite images covering entire area of
the state for 7 years between 2000 and 2012. The tool was applied
on this data to estimate the percentage of arable land in all these
years and observe the change in percentage across years. For a
year, the total number segments under arable land category was
aggregated to estimate the percentage of arable land for that year.

For the case study, we collected the images from West Bengal
from the GE repository for 7 different years, starting from 2000 till
2012 at an interval of 2 years. For each year we had 7,505 images
covering the entire land area of the southern part of the state. Each
image captured were rectangular in shape with a fixed height and
width. All the images were captured at an elevation of 11 KM,

The estimated percentage of arable land as computed by our tool
is shown if Figure 4. We see that there has been a decline in agri-
cultural land in the state between these year. Although, the percent-
age slightly rose between 2000 and 2002, according to the estimate
there has been a drop of 2.0% between 2000 and 2012.

We wanted to compare our findings with the food production
statistics published by the Bureau of Applied Economics and Statis-
tics affiliated to the Government of West Bengal [2]. The bureau
publishes various statistics about the state in their annual Economic
Review journal. The different food production related metrics we
collected are - Land area under rice, Land area under wheat, Net
rice production, Net wheat production, Net cropped area, Agricul-
tural area index, Agricultural production index.
Our goal was to validate our findings as well understand the impli-
cations of reduction in arable land and food production from these
data. To validate the estimate given by the tool we compared the

Figure 5: Comparison between official percentage cropped area
(upper) and estimation from the satellite images analysis tool
(lower)

Table 3: Comparison between arable land and food production

Index Correlation coefficient p-value
Net rice production 0.58 0.012*
Net wheat production 0.61 0.041*
Agricultural area index 0.68 0.023*
Agricultural production index 0.72 0 .030*

result with the cropped area published in the official report. The
comparison of the official and our computed values are shown in
Figure 5. Although our findings do not exactly match with the offi-
cial figures, we see that the trends in both the plots have similarity.

To understand the implication of decline in arable land, we com-
pared our findings with the food production data published by the
government. We computed the correlation coefficients to see how
arable land area can affect food production. The results are sum-
marized in Table 3. The results indicate that in a region reduction
in arable land has a positive correlation with food production.

Apart from looking at the entire state as a whole, we have also
analyzed different districts of the state separately. In India, dis-
tricts are the second level administrative boundaries in each state.
The state of West Bengal is divided into 19 districts, including the
urban district of Kolkata, which is also the state’s capital. In this
paper we have focused on 12 districts in the southern part of the
state, excluding the district of Kolkata. Figure 6 shows the map of
West Bengal and district boundaries of the region considered in this
study. The southern part of the state is part of the large Gangetic
plain and conditions are well suited for agriculture.

Our satellite images were labeled with the latitude-longitude co-
ordinates of the location from where they were extracted. Using a
GIS database we identified the district from where the image was
extracted. Then for each such cluster we computed the year-wise
share of each land type and produced a district level data of land
pattern and its changes. The percentage change in agricultural land
for these districts is summarized in Table 4. The figure in the table
shows the change between year 2012 and 2000, as produced by our
tool.

We see that in some districts the disappearance of agricultural
land is higher than others. Interestingly, the districts with higher
rate of disappearance, such as, Howrah, Hooghly are close to the
urban district of Kolkata. Due to increasing population of the city,
more land from the neighboring districts are being taken up for ur-
ban development. Similar arguments can be applied to relatively
high rate of disappearance of agricultural land in the Burdwan dis-
trict. Burdwan is a very populous district with industrial towns
such as Asansol and Durgapur. On the other hand, in some dis-



Figure 6: Map of West Bengal and district boundaries of southern
part of the state

Table 4: District-wise change in agricultural land between 2000
and 2012

District Change in agricultural land (%)
Bankura 6.10
Burdwan -1.44
Birbhum -2.36
Midnapore1 0.23
Howrah -1.76
Hooghly -5.30
24 Parganas (North) -0.36
24 Parganas (South) -2.11
Nadia 2.09
Murshidabad -2.20
Purulia 1.48

1 Midnapore district was split into 2 districts in 2002. Due to unavailability
of separate data for earlier years we have considered them as one aggregat-
ing their data wherever needed

tricts, such as, Purulia and Bankura where we observe a increase in
agricultural land. These districts are in the western part of the state
and industrialization initiatives are limited in that region. Also, the
population density is relatively lower.

Similar to the state-level data, we tried to find the relationship
between arable land and food production in the districts as well.
We did this comparison between the land share and rice production
in these districts. We chose rice was because it is the most pro-
duced crop and the most consumed food in this region. The result
of this comparison is shown in Figure 7. The figure shows a pos-
itive relationship between agricultural land (computed by the tool)
and rice production in these districts. Both the values have been
normalized to a score between 0 and 1. The scatter plot shows an
approximate linear relationship between land area under agricul-
ture and rice production. Hence, even in the districts we see that
land area is changing over time and this change is showing positive
relationship with food production.

7. DISCUSSION
In this paper, we presented a framework to estimate food produc-

tion by identifying land pattern distribution in a region. We have
demonstrated that the estimation of agricultural land in a region us-
ing our tool correlates strongly with food production indices in that
region. The state of the art methods of measuring these metrics are

Figure 7: Relationship between agricultural land area and rice pro-
duction for different districts (2012)

done manually by visiting the site, hence they are, cumbersome,
time consuming and prone to errors. With our solution, reason-
ably accurate estimation of the same parameters can be done much
faster. With this improvement, our tool can be an important tool
for government employees and policy-makers, who can have faster
access to such data, leading to better decision-making.

Based on the early findings from the study presented in the paper,
we are in the process of collaboration with Government of West
Bengal by deploying our tool at their units, offering our findings
and in exchange including their expertise and additional data to im-
prove the system’s functionalities. We are also planning to deploy
our tool in Ghana at the Ministry of Food and Agriculture (MoFA)
field offices. MoFA field workers can greatly benefit from this tool
by obtaining data about the area under their supervision. There is a
shortage of field workers recruited by MoFA and thus, each worker
has a huge area to supervise. Monitoring the land, which normally
done manually by visiting the area in person, is slow and cumber-
some. This tool can provide a positive impact on their operations
by reducing time and increasing accuracy in their data. A new fea-
ture can further benefit them, if the tool can access updated satellite
images of the region at a more frequent intervals.

The main component of the study is the satellite image analysis
tool. The performance of the tool is greatly dependent upon the
underlying data on which the model is trained and applied. In this
study, we have used a freely available repository of satellite images
from Google Earth. Although this data is free and easily accessi-
ble, the quality is poor. Re-training the model with high resolution
satellite images can vastly improve the performance of the system
and quality of the data produced. A major emphasis in the future
direction of this work will be to acquire better data and train an
improved model.

Apart from producing agriculture related information, the in-
creased impact of the tool can be realized by applying it to other
applications. This tool can be used – at its present form – to moni-
tor water bodies. This can help in two different applications - firstly,
detecting unlawful filling of ponds and lakes for development, and
secondly, monitor the impact of rising water levels in coastal areas
or disappearance of land due to river erosion. Generally, this tool
can be a useful apparatus for policy makers and law-enforcement
agencies to detect illegal constructions on protected or vulnerable
land, provided that it has access to supporting data.

8. CONCLUSION
This paper presents and evaluates a hypothesis that changing

land pattern can affect food production in a region. In order to eval-
uate the hypothesis, we built a tool that processes satellite images
to estimate the distribution of land patterns in a region, computes



the changing proportion in arable land and show that these changes
correlate with food production indices in the region. The satellite
image analysis tool introduced in the paper, processes Google Earth
satellite images to classify land area in a region into 4 classes. The
image classification engine of the tool demonstrated an accuracy
of around 89%. Further improvement in the accuracy can greatly
increase the tool’s usability and reliability. So, one direction of the
future work is to improve the system performance specifically for
satellite images used and goals aimed in this work. Another ap-
proach in the future versions of this work would be to incorporate
datasets from other sources, with less noise, better coverage and
more frequent updates. In future, we would also like to focus on
other regions, apart from West Bengal and build nationwide maps
of land patterns. In addition, highlighting regions where there has
been drastic changes in this pattern over the recent past.
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