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Abstract 

Most of our productive knowledge was handed down to us by previous generations. 
The transfer of knowledge from the old to the young is therefore a cornerstone of 
productivity growth. We study this process in a model in which the old sell knowledge to 

the young - old agents train the young, and charge them for this service. We take an 
information-theoretic approach in which training occurs if a young agent watches an old 
agent perform a task. 

Equilibrium is not constrained Pareto optimal. The old have private information, and 
this gives rise to an adverse selection problem: some old agents manage to sell skills that 
the planner would prefer to extinguish so as to allow more young agents to start new 
technologies. In this sense, there is too much resistance to change. 
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1. Introduction 

How efficiently is productive knowledge passed on from one generation to the 
next? Some of this knowledge is handed down informally in the family, and some 
of it is taught in schools. A third mechanism is learning on the job: acquiring 
productive knowledge through the process of on-the-job training and learning 
by doing. Our paper focuses on the third mechanism. 
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Two prominent equilibrium models of learning on the job are those of 
Prescott and Boyd (1987) and Chari and Hopenhayn (1991). They assume that 
the process by which one worker learns from other workers can be (and is) fully 
internalized by firms. Our approach is similar in spirit, but our conclusions differ 
from theirs. We explicitly model the information that the process of training 
transfers, and this leads to the conclusion that the market for on-the-job training 
is plagued by the efficiency problem that usually crops up in markets for 
information. 

We study an overlapping generations economy in which people live for two 
periods. An old worker trains the young worker who works alongside him. This 
training consists of an explicit mechanism by which information is revealed to 
the young worker. The information consists of observations of past signals 
about the unknown parameters of the production process that the old and the 
young worker alike both use. So although agents die, their information can 
survive for ever. 

There are two fundamental differences between this economy and a friction- 
less one in which a pair of infinitely-lived workers were to share their information 
instantaneously; both of them imply a level of output that is lower in the 
overlapping generations economy than in the infinite horizon one. The first 
difference occurs because the transfer of knowledge is assumed to take time: the 
young worker must watch the old worker do the job.’ Although the young 
worker can work and watch at the same time (so that training is assumed to 
involve no foregone output cost), information still accumulates more slowly 
than it would if an infinitely-lived agents were to observe the same signals. This 
is because there is no way for the old worker to pass on the information that he 
gains from the signal that he sees in the second period of his life. Therefore, in the 
overlapping generations economy, the two-worker team will have only half the 
productive information that a pair of infinitely-lived individuals would have, 
and a permanently lower level of output around trend. This first difference 
therefore simply reflects the added constraints that we impose on informational 
transfer among people. 

The second difference stems from a failure in the market for information. We 
follow Prescott, Boyd, Chari, and Hopenhayn assume that the old sell training 
to the young. The content of the training is known to the old worker, but not to 
a prospective young buyer. The young worker therefore enters a match with an 
old worker based on what he knows about the population of all old workers. 
Old workers with inferior skills exploit this, and in equilibrium too much 
training occurs in comparison to what a central planner could achieve through 

‘The assumption that the transfer of knowledge occurs through watching is backed by a study by 

Barron, Black, and Loewenstein (1989) who report (in Table 1) that in a sample of some 2,000 

employers the typical worker spent at least five times as many hours watching others work as he did 

in formal training programs. 
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a tax scheme. Equilibrium allows the survival of some skills that the planner 
would prefer to extinguish so as to release more young agents to start new 
technologies. In this sense, competitive equilibrium involves too much resistance 

to change. 

2. Model 

There will be many technological lines. We first describe what happens within 
one such line. 

2. I. Within a technological ‘line’ 

A technological line has many grades indexed by n = 0, 1,2, . The produc- 
tion function and information structure within a technological line are taken 
from Jovanovic and Nyarko (1994). If an agent uses grade n at date t, his decision 

z yields net output q via the production function 

q = r”[l - (ynt -z)‘]. (1) 

Here y,, is a random variable that acts as an unknown ‘target’ and is observed 
after z is chosen. Since y 2 1, a larger n denotes a better grade. Since y,, is 
observed regardless of what z is chosen, z does not affect learning. Assume that 
everyone is risk-neutral, so that each agent maximizes his own expected output. 
Let E,(e) denote the conditional expectation at date t. The decision that maxi- 
mizes E,(q) in (1) is 

z = E,(Y,,). (2) 

The random target fluctuates around a grade-specific parameter 8,: 

Y,, = 0, + wnt. (3) 

The agent does not know 0,. He can observe y,,, but only if at date t he uses 
grade n. Let N(~,c?) denote the normal distribution with mean ~1 and variance 
CJ*. Assume that w,~ is an i.i.d variate, with marginal distribution N(0, oi,). Since 
Et(w,t) = 0, Eq. (2) implies that the optimal decision is 

z = we,), (4) 

and (l)-(4) imply that expected net output is 

E,(q) = y”C1 - w(4) - &I, (5) 
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where vat-,( *) denotes the conditional variance. If he uses grade n, he observes 
y,, and learns more about e,, which allows him to make a better decision z. This 
reduces var,(&) and raises his expected net output. Indeed, suppose that the 
agent has a prior belief over 8, which is N(m,,x,), where 

m, = E,O, and x, = var,e,. (6) 

Then upon observing y,, it is easy to verify that the updated beliefs over 0. will 
be normal with variance given by the function 

h,(x) = a;x/(cJ; + x); (7) 

in particular, the posterior variance is x,’ = hi (x,). The updated posterior mean 
is given by 

d = hl(x,)(m,lx, + h/d). (8) 

However, this learning process is bounded: Using grade n forever allows the 
agent to learn 8, completely so that E,(q) -+ y”[l - oi] < CC. 

2.2. Upgrading within a technological line 

Successive grades are linked as follows: 

e -&e”+s.+i, n+t - n=l,2 ,... . (9) 

The E’S are iid with distribution N(0 , 0:). E, + 1 and 8, are independent of each 
other. Agents know ct and a:, but they do not see the 8’s or 8’s. 

If XL is an agent’s posterior variance over 0. at the end of the period, then from 
(9) the agent’s posterior variance, x n + 1, over 8, + 1, will be given by the function 
h2 below of xb: 

h,(x) = CLX + (~,2 . (10) 

Hence, x,+ 1 = h,(xh). Suppose that at the beginning of the period an agent has 
a posterior variance over 8, equal to x,. Suppose that agent uses grade n. Then 
from (7) and (10) we conclude that the mapping from x, into x, + 1 is given by the 
mapping 

B(x) = hz(hlb)), (11) 
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sothatx,,, = B(x,). If m, is the mean of the beliefs over f3,, then from (8) and (9) 
after y,, has been observed, the posterior mean over en+ 1 will be 

m,+l = ~1’2ht(x,){m,lxn + hlo;I). (12) 

It is easily verified that B has a fixed point which we denote by x” (see Fig. 1). 
We assume that loll < 1. The map on the right-hand side of Eq. (10) then has 
a fixed point 

1 = a,2/(1 - G(). (13) 

From i iterates of the function B converge monotonically to 2 (see Fig. 1). 
We suppose that the ex ante distribution over &, the parameter of grade 0, is 

its stationary distribution - N(O,i). We assume that 

1 - .? - 0; > 0. (14) 

This means that the ex ante expected output on grade zero is positive. 

2.3. Switching to a new technological line 

We suppose that there is a continuum of technological lines available. Ex 
ante, each technological line is the same. Each technological line has an asso- 
ciated sequence of grades n = 0, 1,2, . . . , and parameters {e,} z= 1 as described in 
Sections 2.1 and 2.2. The {e,}z= 1 sequence associated with one technological 
line is independent of the sequence associated with any other technological line. 
We impose the assumption: 

Fig. 1. The determination of i, I, and B’(x). 
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(Al) On an untried technological line, the ex ante belief over &, (and hence 
over 8, for each n = 1,2,3, . . . ) is N(O,x*). 

At date t, any agent can choose on any technological line any grade n which is 
less than or equal to t. This means that the ‘production frontier’ is moving out in 
step with time. [In Jovanovic and Nyarko (1994) this was called the 
Chari-Hopenhayn assumption.] 

Suppose the agent is contemplating using a technological line over which he 
has no information. From (Al), his ex ante variance over 8, is equal to ,G for all n. 

Then (14) implies that his expected output is the highest if he sets n = t. If an 
agent abandons a technological line whose grade is on the frontier, and starts 
a new technological line, the switch will represent a lateral switch - i.e., to the 
same grade n = t. [Jovanovic and Nyarko (1994) had only one technological 
line. Lateral switches were therefore not allowed in that paper.] In the model we 
present in the next section, some agents will indeed make lateral switches. 

3. The overlapping generations structure 

We shall assume an overlapping generations structure with two-period lives. 
People are risk-neutral, with lifetime preferences cyoung + 6cold, where cyoung and 
&id denote the consumption when young and when old, respectively, and where 
6 is the discount factor which we assume satisfies 0 < 6 < l/y. 

If the young and the old work together, the young can learn from the old. We 
shall refer to an old agent as ‘the foreman’. A young agent working with 
a foreman will be referred to as ‘the apprentice’. All decisions are made at the 
beginning of a period. Anything learned during the period cannot affect deci- 
sions until the following period. 

We shall make the following assumption: 

(A2) Agents are always on the production frontier (in the sense of IZ = t) of 
whatever technological line they are using. 

We will provide justification for assumption (A2) in Appendix B. 

3.1. The foreman ‘s problem 

First consider an old agent ~ a foreman - at some date t. Suppose that the 
foreman is using a technological line that has been in use since date 0. By 
assumption the foreman will be at the frontier, and hence will be using a grade 
II = t. Therefore n is also the age of the technology. Suppose that the belief of the 
foreman over the parameter 8, is N(m,x). The foreman will operate that grade 
according to (4) and will receive an expected payoff equal to y”( 1 - 0; - x). The 
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foreman at the beginning of the period also has to decide on whether or not to 
hire a young agent as an apprentice. If the foreman does not hire an apprentice, 
he receives no further payoffs. He dies. So does that technological line! 

Suppose on the other hand that the foreman does hire an apprentice. The 
apprentice will then use the technology of the foreman, and his grade, to 
produce output. As assumed in Section 2.3, the apprentice, when hired, has 
a belief over 8, equal to its stationary distribution, N(0, a). With this belief the 
apprentice chooses an action according to (4). In particular, he chooses the 
action z = 0. From (1) this results in an output of I - 4,‘. We suppose all of this 
output goes to the foreman. We now state the outputs and payments in units 
deflated by 7”. Using (3), the expected value of this output in terms of the 
expectations operator of the foreman, Er , is given by: 

Er(1 - y’) = 1 - ai - x - m2. (15) 

In return for these labor services, the foreman pays the apprentice an amount c, 
(which we shall characterize later). We refer to c, as the wage rate associated 
with labor on grade n. We may represent the value function and decision 
problem of the foreman by 

VJm,x) = max{l - x - ai, 1 - x - a; + Er(1 - y2) - c.}. (16) 

Eq. (16) indicates that the decision of the firm is to hire or not hire. The 
definition in (16) is stated as if n and x are both free variables. We will later only 
study values of x which are some deterministic function of II, in which case we 
drop the x from the specification of the value function. 

3.2. The young agent’s problem 

The young may either be hired by a foreman or not hired. We first consider 
the case of an agent who is hired. 

3.2.1. If agent is hired 

We now consider the situation of a young agent who is hired by a foreman 
using a grade n of a technological line. The two, the young and the old that is, 
must then use the same grade. The apprentice will receive the amount c, in his 
first period as payment from the foreman. At the end of the period the young will 
receive information from two sources. The first. of course. is the observation of 

:‘,I from use of tliat grade. The apprentice also !:c:.;ts by rra::hiny: he obtains 
information from observing the foreman’s decision, z. The foreman sets z to 
equal his own expectation of Q,,, ErB,. Having seen his z exactly, the apprentice 
learns the foreman’s m, = E&e,). Each foreman has a reputation in that it’s 
widely known how much he knows, but not exactly what he knows. That is, the 
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foreman’s posterior variance over 8, will be common knowledge. We shall 
denote this posterior variance by x,. Since the foreman’s beliefs are normally 
distributed, this implies that his beliefs are fully revealed once his z is observed. 

These two sources of information leave the apprentice with beliefs over en+ 1, 
the parameter of the next grade, which from (9) is easily seen to be normal with 
mean and variance given by (12) and (11). In the next period the young agent 
becomes old. He becomes a foreman and solves the foreman problem described 
earlier, but with grade n + 1. His lifetime return (deflated by y”) is therefore 

c, + 6~E,CI/,+l(m,+,,x,+,)l, (17) 

where E, denotes his expectations operator over m,, I when he is young. We 
shall define E, precisely in (30). 

We assume that it takes an entire period for the young to observe the action 
choice of the old. In particular, the old cannot merely inform the young of his 
beliefs at the beginning of the period before production takes place. We envisage 
a situation where the young actually have to watch the old, and that this takes 
an entire period. Each apprentice therefore chooses an action z = 0. The 
foreman with beliefs which are normal with mean m however believes that the 
optimal decision is z = m. Hence that foreman believes that the young will make 
‘mistakes’. When m is large those mistakes are large. Hence not every foreman 
will take on an apprentice. Foremen will have skills specific to technologies on 
which young agents are highly unproductive. This would be a technology on 
which II~,[ has revealed itself (to the old agent) to be large. If hired, a young agent 
makes costly mistakes. Such technologies will therefore die with the foreman 
who operates them, and new technologies will be started by young agents that 
did not join up with a foreman. 

3.2.2. ‘Going it alone ’ 
Suppose that the young agent is not hired by the foreman who was about to 

use grade n of a technological line. The young agent then starts a new technolo- 
gical line. From (A2) the young agent uses grade n of the new technological line. 
From (Al), the young agent’s belief over the parameter of grade n of the new 
technological line is N(0, a). This is of course the same as the ex ante distribution 
of 0,, of the original technological line. Indeed, after deflating by y”, the expected 
output of this agent on the new technological line is equal to the expected output 
on grade 0 of the original technological line. This deflated output is equal to 
1 - i - 0;. Let y, denote his observation from the use of that grade. Then from 
(12) and (11) his posterior belief over the next grade after observing y, is 
N(mI ,x1) where 

m, = a’i2h,(x^)yO/a~ and x1 = B(i). (18) 
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His expected lifetime utility, discounted by 1’” , is therefore given by 

where E, denotes expectations over the random variable m, defined in (18). u0 is 
the value to the young of ‘going it alone’ - when not hired by a foreman. This is 
in units discounted by y”. Implicit in (19) is a stationarity assumption which says 

that calendar time matters only in as much as it affects production possibilities. 
We say more about this in Section 5. 

3.2.3. The hiring decision 

Young agents are perfect substitutes. Old agents are not; they have learned 
a specific skill. In particular they have information on a technological line. For 

now we assume that all the rents from the partnership go to the old. Later on we 
show that some young agents are not hired in equilibrium. Competition then 

results in the old receiving all the rents. This implies that in equilibrium the 
value to the young from being hired, i.e., (17), will equal the return from going it 
alone, (19). This implies that 

cn = 1 - 2 - 0; + 6y{EV,(ml,.x,) - E,CV,+,(m,+,,B(.~,))lj. (20) 

Putting this value of c, into the foreman’s problem (16) and simplifying implies 
that 

VJm,x)= 1 -x-&+max{O,g,-m’}, (21) 

where gn is independent of m and is given by 

gn = 4 - xn + 6y[E,V,,+ ,(m’, B(x,)) - E, I’,(m,, B(2))]. (22) 

Suppose that the foreman is of type (m,x) with m = 0. Then that foreman 
would himself set z = 0 when operating his technology. A young agent using his 
technology always sets m = 0. The expression gn above is the net output such 
a foreman receives from the young, E(l - y2) - c,. If the old is of type (m,x) 

with m # 0, that old person would prefer the young to choose the decision 
z = m. However, the young always choose action z = 0. As far as the old is 
concerned, the young would be making ‘mistakes’ when operating his technol- 
ogy. The total net output that the old receive from the young if hired, is g,, - m2. 
The amount - m2 therefore represents the losses or costs due to the mistakes of 
the young. If these are large, the old will then decide not to hire the agent. 
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A foreman of type (m,x) will therefore hire a young agent at date n if 
gn - m2 > 0 (and will be indifferent between hiring and not hiring if equality 
holds). We define 

m,(x) = (g#12 if gn > 0, 
(23) 

= -0 otherwise. 

A foreman of type (m,x) will hire a young agent whenever m lies in the set 
A,(x) E [ - @,(x),%,(x)]. We call m,(x) a hiring rule and A,(x) a hiring set. 
A foreman is more likely to hire a young agent the smaller is the foreman’s lml. 

The ,4(x) correspondence defines the hiring set in (m, x) space, and it is shown 
as the shaded area in Fig. 2. Recall that 1 is the fixed point of the operator B. 
Since B(a) < z?, and B(x) is as shown in Fig. 1, the sequence B’(f) declines 
monotonically from 2 to x’ as shown in this figure. This is why in Fig. 2 values of 
x below i or above _? could not arise. 

At the date 0 we suppose that the old at that date have the same beliefs about 
the technology as do the young. In particular, m. = 0 and the variance of m. is 
zero. The young receive no extra information after using the technology of the 
old at that date as opposed to going it alone. If indeed the young were hired, 
they would be paid an amount when young, c,, equal to what they would receive 
from going it alone, 1 - 0: - 2. 

3.3. The transfer of information along a technological line 

First consider the following slight digression. Suppose two agents A and 
B have the Same prior over some parameter 

m 

The Hirlng Set 

J k(x) 

8. Suppose A receives some 

Fig. 2. The hiring set. 
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information and forms a posterior over 0. Suppose that B does not receive that 
information but observes the posterior of agent A. What then is B’s posterior 

over 9? It will of course be equal to the posterior of A. Despite not knowing 
precisely the information of A, B says to himself: ‘Any information that A could 

have seen would lead me to have a posterior equal to the announced posterior of 
A since I have the same prior as A. Hence, despite the fact that I did not see A’s 
information, my posterior is the same as that of A.’ 

The agent who is young at date 0 has a prior N(O,$ over OO. That agent then 
observes y. and uses this to form a posterior over Ho, and hence over 0i. His 
posterior over 8, is then N(m,,xi). Suppose he hires at date 1 (or more precisely 
the first period in the life of the technological line) and announces m, to the 

young at date 1. The young at that date do not see y, , only m,. What will be that 
agent’s belief over Q,? From the argument made earlier, the young at date 1 will 
have the same posterior, N(mi,xi), over f3i as the old at date 1. In particular, 

observation of ml is equivalent to observation of y. as regards forming a poste- 
rior over U1. We may extend this argument inductively to each period n. In 
particular, consider the young who observe m,, the posterior mean over 0, of the 
old. Conditional on observing m,, the young will have a posterior over 8, which 
is N(m,, x,). In particular, the young will inherit the beliefs of the old. Further- 

more, the belief of the young conditional on observing m, is the same as the 
beliefs that the young would have if they had observed all of the signals 
Y,,__I = (yo,yl, . , y, _ 1 } that all agents of earlier periods had observed on that 
technological line. m, is a sufficient statistic for the entire information vector 

YP1. 
A foreman using a grade n will therefore have a posterior variance over the 

parameter 0, equal to x, = B”(i). The value function of the foreman is therefore 

a function only of his prior mean m, and the age of the technology. We define 

V,(m) = V,(m,B”(i)), ti, = ti,(B”($), A, = A,(B”(.+)), (24) 

and use this new notation throughout. 

4. The {mn}:= i process 

4.1. The difference equation for m, 

Suppose that the posterior belief over H, is N(m,, x,). From (12) and (3), after 
the signal y, has been observed, m,+ 1, the posterior mean over O,+ 1, is given by 

m,,, = a’i2hl(x,){m,lx, + (Q, + WA/~). (25) 



1044 B. Jovanovic. Y. NyarkolJournal of Economic Dynamics and Control 19 (1995) 1033-1064 

Conditional on m,, the posterior over 8, is N(m,, x,). Hence conditional on m,, 
m flfl is normal with mean and variance given below: 

ECm,+ I lm,l = C(1’2hl(X,)m,{ l/xn + l/o;} = a”%,, (26) 

var[m,+ 1 I m,l = [~“‘hl(x,)l’(l/o~)‘Cx, + dl = ~h(x,)(lldJx,, (27) 

Eqs. (26) and (27) completely describe the distribution of m,, 1 conditional on 
m,, which we denote by Prob( - ( m,). The unconditional variance of m, is given 
by the recursion 

varm,,, = ahI(x,)(l/o~)x, + clvar m, and varm, = 0. (29) 

We require that 

E, = E[*(Ar, . . . ,A,] (30) 

be the expectation operator over the {m,}, process conditional on some hiring 
sets Al, . . . , A,, where A, = [ - m,, ti,] for some @r, > 0. [This operator was 
introduced in (17).] 

We now have the following: 

Proposition 4.1. Fix any n. 

(a) Prob[m I+ 1 s m. I m, = m] decreases as ( m 1 increases. 
(b) For each n, Prob[m2 n + 1 I m. I m, I m] decreases as (ml increases. 
(c) The distribution of rni, 1 (resp. jrn ,,+ 1 I) under the probability dejining the 

conditional expectations E [ . I m, = fi,] jirst-order stochastically dominates 
distribution of m,f+ 1 (resp. Im,, 1 I) under the probability dejining E, in (30) 

where A, = [ - *,,&I. 

Corollary 4.2. The distribution of any increasing monotone transform of m,f+ 1 
(e.g., Im,+ 1 I) is also similarly stochastically increasing in Im,(. In particular all 
statements in Proposition I also hold when mi+ 1 is replaced with an increasing 

monotone transform of m,2, 1. 

Remark. Fix m, and m. Prob(mz+ 1 I m, I m, = m) cannot be similarly ordered 
in terms of n. 
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4.2. The young agent’s ex ante belief about m, 

Consider a young agent who is considering whether or not to work with 
a foreman who has a technology of vintage n. What will be that agent’s belief 
about the value of the posterior mean of the old agent, m,. Note that this belief and 
(12) determines the young agent’s expectation operator E, over m, + 1 which is what 
was required in (17) to state the return to the young from working with the old. 

The young will not use the unconditional distribution, determined by (26) and 
(27) above, to form expectations over m,. The young agent knows the age, n, of 
the technology. This implies that the foremen in previous periods all hired 
young agents. This in turn implies that the m, process fell in the hiring set A, in 
each of the previous periods of the life of that technological line. The young 
agent will condition on this information in forming a belief about the value 
of m,. 

Fix a sequence of hiring sets A, = [ - ti,, KI,]. In particular, an old agent 
using a techology of age n will hire a young agent if and only if his mean m, lies in 
the set A,. Let ai be the variance of m, conditional on knowledge that m, was in 
A, for r = 0, . , JI - 1. This is the belief of an agent whose only information is 
that the technological line has been alive in periods Y = 0,l. , n - 1. Then we 
have: 

Proposition 4.3. 0,2, 1 obeys the pair of inequalities 

with 06 = 0. 

5. Existence and properties of equilibrium 

We now define an equilibrium for the model. Our definition will implicitly 
require that some amount of hiring takes place on each grade n, at least for the 
foreman with m, = 0. We show in Appendix A that any equilibrium must be of 
this kind. 

Dqfinition. An equilibrium is a sequence of wage rates (c,, I,“=, such that if we 
define 

gn = 1 - X, - CT;: - cn, 
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V,(m)= 1 -xX,-o~+max{0,g,--2}, 

u,,-l-&o;+El’,(mi), 

then for each n = 1,2, . . . , 

(no excess supply of young labor), 

1 - 0; - x, - c, 2 0 (31b) 

(hiring occurs on grade n for some m, values). 

In the above, {m,}~= I is the stochastic process of means described in Section 4. 
It is easy to show that in any equilibrium the value functions { Vn},“= r obey the 

functional equation in (21) and (22). Given an equilibrium, using the notation in 
the definition above we see that the hiring rule is given by Ci, z g,“‘, and the 
hiring set is given by A,, for each n. 

In Appendix A we show that equilibria exist. Not only that, there are many 
equilibria. The equilibria are indexed by the value of the age 1 value function at 
m = 0, VI (0). In particular, for each real number u greater than or equal to some 
critical value, which we refer to as 6, there exists an equilibrium with l’i (0) = 0. 
[See remark (Rl) of Appendix A.] 

The unique equilibrium such that Vi (0) = U will be referred to as the bounded 
equilibrium. [See remark (R2) of Appendix A.] The bounded equilibrium has the 
following interpretation: Let us consider a finite horizon equilibrium where we 
insist that the decision problem is the same as our earlier description for all 
agents with technology of age n I N + 1, but where we insist that no hiring is 
allowed on technologies of age N + 1 or larger. This means that we ‘kill’ all 
technologies precisely when they get to age N + 2, regardless of whether or not 
young agents would want to work on such technologies. It turns out that there 
exists a unique finite horizon equilibrium of this sort. The unique bounded 
equilibrium is the limit of the finite horizon equilibria, as the horizon, N, goes to 
infinity. 

Each equilibrium with I/, (0) strictly greater than 5 will be such that 

lim V,(m) = cc for all m. (32) 
n-a: 

We refer to such equilibria as Ponzi equilibria. 
One thing that comes out of our construction of equilibria is: 
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Proposition 5. I. In any equilibrium, the hiring rule, rii,, is strictly positive for 

each n = 1,2, . . . , and the hiring set A, = [ - m,,rii,] is u nonempty nondegener- 
ate interval for each n. 

Corollary 5.2. In any equilibrium, for each N < a, there exists a strictly 
positive probability that the length of life of the technological line will exceed N. 

Below we show that in any Ponzi equilibrium c, the wage payment of the old 
to the young for their labor tends to minus infinity so will eventually be negative. 
This means that the young pay the old. This is in return for the information that 
the old will transfer to the young. 

Proposition 5.3. In any Ponzi equilibrium, 

lim c, = - E, 
n- rlD 

It should be clear what is going on in the Ponzi equilibria. Suppose that 
at date 0 a young agent starts a technological line. Any arbitrarily high value 
for the date 1 value function, V1, may be obtained by setting c1 equal to 
some large negative number. The date 1 young are willing to pay this amount 
because they expect that when they get old the young then will pay them back 
an even higher amount. That even higher amount is justified by yet higher 

payments, etc. 
Regardless of whether we are in a bounded or Ponzi equilibrium, the lifetime 

payoff to any agent is equal to u0 = 1 - $ - ai + SyEV’,(m,). Hence despite 
the fact that along a given Ponzi equilibrium V,(m) -+ cc, each agent receives 
the same finite discounted payoff of uO. The reason for this is simple. Even 
though V,(m) -+ 00, so too does c, ---f - co. The payoff to the agent who is 

young at n is c, + 6yEVn+ 1 (m,, 1) = uO < a. Implicit in all of the paper and 

indeed in the construction of equilibria above is the following: We rule out 
equilibria of a particular type. We do not consider equilibria where the age 
1 value function, V,(m), depends upon the date. Suppose that from dates 
1 through T technological line A is used. At date T no young are hired on that 
line and it dies. The young form a new technological line B at that date. Let I’ : 
and I’: denote the age 1 value function corresponding to technological lines 
A and B. Since we have multiple equilibria, it is in principle possible that at date 
T the young form a technological line with a different associated Ponzi equilib- 
rium than that of line A. In that case V$ # I y. This is a form of time 
nonstationarity. If we allowed for this inequality, we would then have to index 
our value functions by not only the age of the technology, but also by calendar 
time. We rule out such time nonstationarities. Note however that this does not 
imply in our model that V,, = V,, i. 
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6. The planner’s problem 

6. I. The optimal policy 

The planner wishes to maximize the discounted sum of utilities of all the 
generations starting at date 0. This means he will maximize discounted aggre- 
gate output. As in the case of equilibrium, the planner’s problem can be recast in 
a stationary form, with a discount factor of 76. The only difference between the 
planner’s problem and the equilibrium solution is in the hiring sets. The planner 
chooses the hiring set to maximize aggregate output of all generations. The 
equilibrium hiring set is chosen to maximize the payoff of the foreman doing the 
hiring. In this section we shall compare the hiring sets in the two situations. 

In the equilibrium solution, the discounted aggregate output may be com- 
puted by adding the output of each foreman to that of the lifetime output of the 
current and future young. The young at any future date will have an expected 
output equal to u0 given in (19). The equilibrium utility of an old agent with 
technology of grade n and beliefs represented by (m, x) was denoted by V,(m, x). 
The equilibrium lifetime utility of the young agent is uO. Hence the equilibrium 
utility of the foreman of type (m,x) plus the discounted lifetime utility of the 
young agent that he interviews, plus the discounted output of the agent that this 
young agent interviews in the subsequent period, and so on into the infinite 
future, is equal to 

W E(m) = V,(m) + u&l - 6y). (33) 

The value of Wi does not represent the maximum possible discounted output 
stream. The planner will wish to follow a hiring policy that will, as a function of 
m and x, maximize the analog of WE. 

The planner has the same information as the foreman does, that is, he knows 
m and x. If a foreman of type (m, x) hires a young agent, the planner’s expectation 
of their joint output is 

[l - x - oi] + [l - W? - x - ai] = 2(1 - x - 0:) - m2. (34) 

If the young agent is to work alone, the planner must assign him a random new 
technological line, and so he expects the joint output of the two agents to be 

[l -x - &$] + [l - 2 - cr;]. (35) 

Let W,(m) be the planner’s expectation of the infinite sequence of such pairs of 
outputs. It solves the equation 

W,,(m) = max{2(1 -x, - ai) - m2 + 6yE[W,+,(m,+,)(m, = m], 

1 -xx,--;+ 1 -2-o$+6yEW,(m,)}, (36) 
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where the first expectation is over m n+ 1 given m, [defined via (26) and (27)] and 

the second is over m, defined in (18). Using standard contraction mapping 
techniques it should be easy to see that there exists a unique sequence of 
continuous functions ( W,,}z= 1 satisfying (36). 

Lemma 6.1. W,(m) is decreasing in Im( for each ,$.xed n. 

Since the top line of (36) is a decreasing function of Im,l. or equivalently of m’, 

while the second line of (36) does not depend on m,, the planner will choose 

a cutoff value for Im,l, call it miPt and reject all matches for which lm,,l exceeds 
this value: 

m;P’= (.$-x, + 6~{E[W(m,+,)lm~P’1 - EW,(m,)l i”‘. (37) 

The equilibrium hiring set cutoff, fi,, is given by (23): 

r?z, = {.?? - x, + Sy{E,[V,+i(m,+,)] - E,V,(m,))~)’ 2. (38) 

From (33) this becomes 

fi, = (2 -x, + 6y{E,[W~+,(m,+l)] - E,Wy(m,)) i”“. (39) 

Since W, is the outcome of socially optimal decisions, 

W,(m) 2 WE(m) for all m. (40) 

Recall that E, in (38) represents expectations over m,, , conditional only on 
information that the m, fell in the hiring set, A,, in each of the previous periods in 

the life of the current technology line. 
Consider a planner at some fixed date t observing the equilibrium in process. 

At that date the old will be using a technology of age n. Suppose that the planner 
knows the value of m, of the old agent using that technology. If the planner had 
the opportunity to change the hiring decision at that date only, would the 
planner choose to increase or to decrease the hiring set’? It turns out that the 

planner would want to decrease it! 
Let m,* be the optimal hiring rule under the conditions just mentioned. The 

planner’s value function is then given by the relation analogous to (36): 

W,(m) = max{2(1 -x, - o:.) - m2 + 6yE[W;+l(m,+,)Im], 

1 -.u,-o~,+l-.~-o~,+GyEWT(ml)l. (41) 
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Eq. (41) emphasizes the problem of the planner in our experiment: The 
planner is deciding the decision rule for a technology of age n at some fixed date 
t. Given m the planner must decide whether or not to allow a young to be 
matched with a foreman with mean m, or whether to inform the young to go it 
alone. If the young is hired at date t, then in each subsequent date the 
equilibrium is played out. Hence we see the equilibrium value function W E+ 1 on 
the top line of (41). Suppose on the other hand the planner recommends that no 
young are hired by the foreman of type m. Then the young goes it alone. If we 
suppose that young agents re-start the equilibrium outcome, then W f on the 
second line of (41) is the equilibrium infinite horizon value function, i.e., 
W : = WT. If alternatively the young start up the planner’s problem, then 
W 7 = WI. From (40) we therefore have that in either case 

W T(m) I W,(m) for all m. (42) 

Using Corollary 4.2 in addition to arguments similar to that of Lemma 6.1, it is 
easy to see that the top line of (41) is decreasing in (ml. The second line in (41) is 
independent of m. Hence the solution to the problem in (41) and (42) is 
characterized by a hiring rule m, * 2 0. The planner will recommend that the 
young be hired whenever m, lies in [ - mX,m,*], and will recommend no hiring 
when m, lies outside of this interval. 

We now have the following: 

Proposition 6.2. Suppose that the planner may make a one-time change in the hiring 
rule. In particular, suppose that the planner is solving the problem characterized by 
(41) and (42) for somejxed n at some date t. Then the planner will choose to reduce the 
hiring set, i.e., m,* I m,. The inequality is strict whenever rii, > 0. This means that if 
there is ever a nontrivial amount of hiring, that amount of hiring is excessive. 

0 n Age of Teshdogy 

-m’, 

Fig. 3. The optimal limited intervention. 
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Proposition 6.2 is true because the informational asymmetry between fore- 
men and young agents gives rise to an adverse selection problem. The marginal 

technology, ti,, is the worst among continuing technologies. When he hires, the 
marginal foreman ignores the fact that he is contaminating the distribution of 
surviving technologies. Therefore, in equilibrium, there is a tendency to stick too 
much to old methods and the startup rate of new technologies is too low. 

6.2. Implementing the optimal policy 

The planner can implement the optimal limited intervention policy without 
knowing any of the m’s. If he chooses to intervene at the point at which 
technologies are n periods old, (38) implies that he can induce old agents to be 
indifferent between hiring at m = mf by imposing a hiring tax 5, given by 

T, = (m,)2 - (m,*)‘. (43) 

7. Overlapping generations learning versus frictionless learning 

How well does the overlapping generations mechanism approximate learning 
by, say, an infinitely-lived individual who sees the same evidence as the old and 
young agent combined? Since h,(x) = xoi/(x + a:,), Proposition 4.3 implies 

ZX,z 
2 IO2 

CXX2 
<z+acJ 

2 

x, + G, n+l -x,+0;, n. 
(44) 

We call this the overlapping generations (OG) case. 

Alternatively, suppose that an infinitely-lived individual sees the signals of 
both the young and old agents in each period. In this case, the difference 

equation for (r,” becomes 

(45) 

since there are now two signals per period, and there is no truncation (i.e., 
@I = CD). We call this the frictionless case. 

The situation is shown in Fig. 4. The top two lines are straight, with slope CL 
The bottom line has slope 0. As x, declines, all three lines in Fig. 4 shift down, 
but if all are evaluated at the same x,, their relative positions remain unchanged. 
Eq. (44) implies that for 0,’ given, oi+ 1 must, in the OG case, lie in the shaded 
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frictionless case 

RHS of (44) 

LHS of (44) 

I 2 

0 C 

Fig. 4. The CT.’ process in the OG and the frictionless cases 

area. So from any fixed prior variance x,, the frictionless case involves faster 
learning, which is reflected in the greater height of its curve, and a more rapid 
growth in 0,‘. The least learning (none!) occurs for the case CI = 0, in which case 
(T ,‘+ 1 = 0 for all n, for both the OG and the frictionless cases. 

The faster learning in the frictionless case also implies a lower x, sequence. 
From (lo), the OG case implies the following difference equation for x, on 
a surviving technology: 

whereas in the frictionless case it is 

CCX,2 
X 

!I+1 = 2x, + 0; 
-t a:. 

These two curves are drawn in Fig. 5; the top one pertains to the OG case. 
Taking .? as the initial condition for both cases implies that at each date x, is 
higher for the OG case, and it must also have a higher limit, denoted by xoo as 
opposed to ZF for the frictionless case. Output and productivity are, both lower 
in the OG case, not just at each date, but in the limit as well. 

If there were no upgrading, the productivity differences between the OG and 
the frictionless case would disappear in the long run, because even OG learning 
would eventually perfectly reveal the parameter(s) of interest. But because of 
continual upgrading, ignorance about 8, is always there, but it is permanently 
larger in the OG case. In the limit, both economies grow at the rate y - 1, but 
the differences in productivity levels remain. 
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% %x3 I % 

Fig. 5. Evolution of x. in the two cases. 

8. Productivity, failure, and the earnings-experience profile 

8.1. Productivity and failure 

If an old agent does not hire anyone, his technological line will end one period 
later. We define failure to be the cessation of hiring. In this model, less 
productive technologies are more likely to fail. When jm( < M, output per man 
of the two-agent team is 

tc1 - x - a; + 1 - x - a; - m2) = 1 - x - a; - (&/2) E q,(m). 

The probability that the firm will fail next period is 

where @ is the normal cumulative distribution function. The function Q,(m) is 
increasing in (ml. The relevant values of Irnl are those below ti, and here q,, and 
Qn are negatively related as Jm( varies. This is shown in Fig. 6. This implication 
fits the stylized fact that less productive firms are more likely to fail. The 
economics is that such firms fail because they find themselves in technologies 
that young agents find hard to assimilate; this may well be an important cause of 
failure in high-tech industries. 
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I m I4 
relevant range 

Fig. 6. The negative relation between q. and Q.. 

8.2. Human capital and the earnings-experience projile 

Old agents who operate older technological lines have higher productivity 
because they have a lower x, = B”(i). When hired to work on an age n tech- 
nology, a young agent receives a level of consumption that [in view of (17) and 
(24)] equals 

c, = u. - $E,I/,+i(m). 

When old, this agent’s expected consumption will be E,I/,+ r(m). Hence the 
ageexpected earnings profile of this agent will have slope 

E,v,,+i(m) = uo 

[ 

-1 
E,I/,+,(m) -y6 . cn 1 

On the right-hand side, only V,, 1 depends on n, and so the slope of the 
ageearnings profile will be relatively high in an age n technology if its V,, 1 is 
relatively high. 

9. Conclusion 

We have modelled training, learning by doing, and production as joint 
activities. Training, however, occurs only if a young agent works together with 
an older one, and it consists of the younger agent watching the older one do the 
job. In equilibrium, some young agents start new firms on their own, while 
others join an older agent as apprentices. Apprentices give up part of their 
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output in return for the training that they get from older agents, training that 
will raise their second-period productivity. 

The overlapping generations model differs radically from the single-agent 
infinite horizon model studied in Jovanovic and Nyarko (1994). First, there is an 
avoidable adjustment cost - modelled as waiting time ~ in the process by which 
knowledge is transferred from the old to the young. This leads to a permanently 
lower productivity in the overlapping generations model. Second, the non-Ponzi 
equilibrium is constrained ineficient, in that too few new startups take place and 
too many old technologies are kept alive. This is because the informational 
asymmetry between the old and the young gives rise to an adverse selection 
problem: an older agent with inferior skills pays his apprentice a wage that 
reflects not his own skills, but rather the skills of the average old agent. 

Appendix A: Construction and properties of equilibria 

In the construction below, the reader may find Fig. 7 useful. First, we provide 
a summary of what is to come. We define by induction a sequence of non- 
negative numbers {I’,,},“, 1 and a sequence of functions G,: [r,_ 1, oz ) + R for 
n = 1,2, . . . . We will then define for each g1 > 0 sufficiently large the sequence of 
numbers {g”},“= 1 by setting g,, = G,(gr). This sequence of numbers will then be 
shown to define an equilibrium. In particular, we obtain a multiplicity of 
equilibria with each equilibrium indexed by gr. Now the details! 

For each g1 > 0 define 

Al = @EICmax{O,gl - mf)l, (46) 

where the expectation E, is over the distribution of m,. Define for each 
n = 1,2, . , 

h,=~-x”+6y{5z-x,+~}, (47) 

Note that for each n, H,(O) > 0, H,(gr) is strictly decreasing in gr, and 
H,(g,)+ - cc as g1 + cc. 

Define I-, 5 0 and G,(g,) = g1 on [r,, co). We proceed by induction. Sup- 
pose that for some N 2 1 we have defined the nonnegative numbers 
r,,,r,, rrN_l and the functions G,: Cr._,, co) + R for II = 1, . . . , N with 
G,(gr) strictly increasing, taking the value 0 at g1 = f, _ 1 and co at gr = a. 
Note that we have already shown this for N = 1. Define r, > 0 be the unique 
number such that GN(gl) - HN(gI) = 0 at g1 = r, and GN(gI) - HN(g1) > 0 at 
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each g1 > I’,. From the properties of HN and GN such a r, > 0 exists. Define 
U,,,: R”, x R, + R by 

UN+l(gN+l,gl) = hEN+lCmax{O,gN+l - &+l}lA, . . . ,ANI, (49) 

where the expectation above is with respect to the distribution of mN+ 1 condi- 
tional on the events A, = {m, E [ - (G,(gr))“‘, (G,(g1))“2]} for n = 1, . . . , N. 
For fixed g1 2 0, the function UN+ r( .,gI) of gN+r is zero at gN+l = 0, and is 
strictly increasing taking the value a3 at gN + 1 = co . Define the function GN+ 1 : 
[L’N, co) ---f R as follows: for each g1 2 rN let GN+ I(gI) be the unique value of 
gN+ 1 such that 

UN+l(gN+l,gl) = GdYl) - HdSl). (50) 

From the properties of the UN+ 1 and GN(gI) - HN(gl) just mentioned, it should 
be easy to see that the function G N+l(gl) is well-defined on [rN, co), and is 
strictly increasing taking the value 0 at gl = I’,+ 1 and co at gl = co. 

Hence by induction we have constructed a sequence of numbers (m jr=0 and 
a sequence of functions (G,},“=, with G,: [r,_ 1, co) + R strictly increasing 
from 0 to co. By construction r, is the value of gl where H,(gl) = G,(g,). 
s n gets larger it should be clear (see Fig. 7) that the functions H, and G, both 
shift to the right. Hence r,_ 1 < r, for all n 2 1. Since H,(g,) increases mono- 
tontically to H,(g,) s lim,,, H,(gl), it should be clear that r, I H,‘(O) for all 
n. Hence lim n_mr,, = Toi exists and is finite. Each of the functions G,(gl) for 
y1 2 1 is therefore well-defined on [r,, co). 

Fix any gl 2 Tai. Define for each it > 0, gn = G,(gI) and 6, = 9:” 

V,(m) = 1 - o$ - x, + max {O,g, - mi} where x, = B”(x,). 

Equating (49) and (50) results in 

gN = HNkIl) + UN+l(gN+l?&) 

=i-xN++{~-xN+l +EN+l[max{O,gN+1 -h’+l}bb, 

- ElCmax{07gl - mf)lI 

. . . >&I 

Define 

(51) 

Al, . . . ,AN]] - [I -0; - i + EICmax{O,gl - d>l} 

=&xN+Gy{E N+l[~N+l(mN+l)~Al~ . . . ,ANii -El[Vlh)l~~ 
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Fig. 7. Construction of equilibrium 

Putting this in (51) gives 

V,(m) = 1 - 0: - xN + max (0, 1 - a$ - xN - m2 - c,), 

where 

Since we may write c, above as 

c, = uo - 6y{E,+,C~~+,(m,+,)l~l, ... r&If, 

where 

u. = 1 - x^ - o:, + SyE, [V,(m,)], 

it should be clear that our construction satisfies the definition of an equilibrium. 
Hence each g, r rrn defines an equilibrium. 0 
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Let us continue with the following remarks: 

(Rl) Multiplicity of Equilibria. From the above construction we have a multi- 
plicity of equilibria indexed by g1 in the set [r,, co). Note that gi and V,(O) 
are related by the relation V,(O) = 1 - ?cl - ai + gi. When g1 = Tm, 
V,(O) = 1 - x1 - crz + r, = 6, say. Hence we could equivalently index the 
equilibria by the value of V,(O) so long as it lies in the set [r?, co). 

(R2) Unique Bounded Znjinite Horizon Equilibrium. The equilibrium from 

;m= rzo 
is such that if V, denotes the associated value functions, then 

n_cu V,(m) I K for all m, where K is a constant independent of n. [Indeed 
K = 1 - x, - a$ + h,/(l - &).I This is the content of Proposition A.1 below. 
We mention in remark (R3) below that all equilibria from g1 > Tco will have 
lim n_m V,(m) = cc for all m. Hence the equilibrium associated with gi = Tco is 
therefore referred to as the bounded equilibrium. Proposition A.1 obtains the 
bounded equilibrium via a construction which enables us to interpret it as the 
limit as N ---f co of N-horizon equilibria. The latter are equilibria where we insist 
that the decision problem is the same as the earlier analysis for all agents with 
technology of age n I N + 1, but where we insist that no hiring is allowed on 
technologies of age N + 1 or larger. This equilibrium is obtained by setting 
g1 = r, and g,, = G,(gi) for II = 1,2, . . . ,N + 1. [In this case gN+i =0 and 
G,(g,) is not well-defined for r > N + 1.1 There is a unique N-horizon equili- 
brium of this type. The unique bounded equilibrium is the limit of the finite 
horizon equilibria as the horizon, N, goes to infinity. 

(R3) The Ponzi Equilibria. In Proposition A.2 below we show that each 
equilibrium corresponding to a gi strictly greater than rm will have an un- 
bounded limiting value function, i.e., lim,,, V,,(m) = GO for all n. We refer to 
these equilibria as Ponzi equilibria. 

(R4) Ruling Out Equilibria Where There Is Never Hiring on Some Grade. 
Suppose that in an equilibrium there is some hiring on grade n but no hiring on 
grade n + 1. Hiring on grade n (by the foreman of type m, = 0) implies that 
1 - x, - a: 2 c, (i.e., firms want to hire) and u. = c, + 6yE, V,,, ,(m,+ 1) 
= c, + Sy[l - x,+ i - oi] (i.e., the young want to be hired) which implies that 

uo-iidyjl -X,+1 -o;] I1 -x,-CT;. (5ij 

For there to be no hiring on grade n + 1, 1 - x,+i - 0: I c,+ 1 and 
uo 2 c,+1 + &Cl - &I+2 - ai] which implies that 1 - x,+ 1 - 0: I u. - 

Ml - x,+2 - gi]. However, since x,+ 2 < x,+ I < x,, this is easily seen to be 
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a contradiction to (52). Hence if there is hiring on grade n, there is also hiring on 
graden+ 1. 

It therefore remains only to show that there is hiring on grade 1. Suppose, per 
absurdem there is no hiring on grade 1. Then it is easy to see that (52) holds for 
n = 0 if we define x0 = 2. Mimicking the previous argument shows that assu- 
ming there is no hiring at date 1 leads to a contradiction to (52) with IZ = 0. 
Hence in any equilibrium there is hiring on each grade. 0 

Proposition A. 1. For all n = 1,2, . . . , G,(T,) < h,/(l - 6~) < cc. In particu- 
lur, if{rii,, Vt},xl 1 is the equilibrium associated with g1 = l7, as constructed uboue, 
then for each m, lim,,, V,(m) I 1 - x, - CJ$ + h,/(l - 67) < a. 

Proof: For each n, it is easy to see that G,(g, ) is continuous on [r,, cc ). We 
will later on show that 

G,(~,v) 5 h, /(l - 6~) for each n and N with N > n. (53) 

The first part of this proposition therefore follows immediately from taking 
limits as N + CC in (53). The second part of the proposition follows immediately 
from the first part and the definition of V,,(m) in (51). 

We now prove (53). Fix any N < cc. Define g, = r, and g,, = G,(gi) for all 
n = 1,2, . . . , N + 1. From the earlier construction we know that such 
g,, . , gN+ 1 is well-defined with gN+, = 0. Further, 

gn = Un+l(gn+l,gl) + H,(g,) for each n = 1, . . . .N. (54) 

However, from the definition of U,,, in (49) Un+i(gn+i,gi) s&~g,+i. Also 
from (4g), HAgi) I h, Hence (54) becomes, gn I Syg,+ 1 + h, for all 
n = 1, . . . , N. This is equvalent to 

gN-r < hgN-(,- 1) + L for all r = 0, 1, , N - 1. (55) 

Define qr E gNmr+ 1 for all r = O,l,..., N - 1. Then (55) becomes 

q*+ I I 6yq, + h, for all r = 0, 1, . . . , N - 1. (56) 

Note that q0 = gN+ i = 0. Define the linear function f: R + iw by 
f(q) = (6y)q + h,. Iterates under this map from the origin will always remain 
below the fixed point, h,/(l - 6y), of this mapping. Since the right-hand side of 
(56) is f(q,), we conclude that q,. I h,/(l - 67) for all r = 0, 1, . , N - 1. This 
in turn implies (53). 0 
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Proposition A.2. Fix any g1 strictly greater than ro3. Then lim,,, G,(gi) = CC. 
In particular, if{&, Vt},Z 1 is the equilibrium associated with any g1 > rrn as cons- 
tructed above, thertfor each m, lim,,, V,(m) = co. 

Proof The second part of the proposition follows immediately from the first 
part and the definition of V,(m) in (51). We now prove the first part of the 
proposition. We will later on show that 

dG,(g,)/dg, 2 1/(6y)” for all n 2 1 and at each g1 2 r,- 1. (57) 

Fix any g1 > Tm. (57) implies that for all n, G,(gl) - G,(T,) 2 (gl - r,)/(dy)“. 
Taking limits as n + CO therefore implies that lim,,,G,(g,) = co. Since 
V,(m) = 1 - ai - x, + max{O,g, - m2}, this implies that V,,(m) + co. 

We now prove (57) by induction. Since G,(g,) = g1 we see that the claim 
holds for n = 1. So assume that (57) is true for some n. Putting gn = G,(gi) in (50) 
implies that 

un+dGn+,(g,),g~) = Gh) - H&l). (58) 

Totally differentiating this with respect to gi and using the fact that H, is 
decreasing in g1 implies that 

(dU,+,ldg,+,)(dG,+,ldgl) + Wn+,/dgl) = dG,ldg, - dH,ldg,. (59) 

Using the induction hypothesis and the fact that dH,/dg, < 0 we conclude that 

(dU,+,ldg,+,)(dG,+,ldg,) + WJn+ddg,) 2 WY)“. (60) 

We will later show that for all n, 

0 < dU,,+ r/dgn+ 1 5 6y and dU,+ i/dg, < 0. (61) 

Putting (61) into (60) implies that dG,+ i/dg, 2 l/(67)“+ ’ which is the induction 
step for n + 1. Hence by induction this shows that (57) is true for all n. 

We now prove (61). Fix any n r 1. It should be clear from the definition of U, 
in (49) that for fixed g1 , an increase in gn by one unit will increase U,, but by no 
more than 6y units. Hence 0 < dU,+ Jdg “+ i I l/&r. This proves the first part of 
(61). Now let us consider the effect of an increase in g1 keeping gn+ 1 fixed. For 
anyr = 1, . . . , n, since G,(gi) is increasing in gi, an increase in gi has the effect of 
increasing the conditioning sets A,. It is easily shown that this implies that the 
variance of m, will increase, with its mean remaining equal to zero. This in turn 
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will lead to a reduction in the value of the integral in (49) which defines U,. In 
particular, an increase in g1 keeping gn+ 1 fixed will result in a decrease in U, + L, 
so dU,,/dg, < 0. This proves the second part of (61). 0 

Appendix B: Justification for assumption (A2) 

One implication of this assumption is that each continuing technological line 
will be upgraded in every period. In this appendix, we show that such upgrading 
will be myopically optimal for some parameter values. Since old agents are by 
assumption myopic, the term ‘myopically’ refers to the young agents. In this 
sense, myopically optimal policies maximize the expected output of the old and 
the young combined, but they ignore the future value of the training that takes 
place during the period. 

Assume that it is the old agent who decides on whether to switch or not switch, 

in addition to deciding whether to hire or not hire. Then we have the matrix of 
the total expected outputs of the two agents:2 

No switch 

Don’t hire Hire 

1-x--a$+y[1 - ?i - &] 1 - x - a; + 1 - x - WI* - f7:. 

= 2(1 - x - a$) - m2 

Switch r[l - ax - 0; - 0;. y[l - c(x - 0; - 0; + 1 - c(.x 

+ 1 - 5z - o$] - 0; - rn’ - oi] 
= 7[2(1- c(x - a,2 - ai) - m*] 

If he doesn’t hire, the old agent will prefer to switch if 

1 - .X - 0;: < r[l - CIX - a; - a;]. 

If he does hire, he will prefer to switch if 

(62) 

(li- 1) 
1 - x - 0; < y[l - RX - a,2 - o;] - -zrn2. (63) 

‘If the young agent goes it alone, it is always optimal for him to start out on the latest available 

technology. This is because Z = CL? + ut so that r[l - c(x - af - a:] always exceeds 1 - x - 6;. 

This fact has been incorporated into the (1,1) box of the matrix. 
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Clearly, if (63) is met, then (62) is as well. If (63) holds for some rn2, then it holds 
for all m2 less than that value. The largest possible m2 that, conditional on 
switching, will maintain the match is the one that equates the output under 
going it alone to the output under the match: 

(rn)’ = 2( 1 - c1x - 0; - 0;) - (1 - CIX - 0; - ai) - (1 - i - 0;) 

Since m2 I (KI)~, substitution for m2 in (63) leads to the inequality 

1 - x - 0; < y(l - CIX - 0: - a;) - (Y - l)& 
2(1 - CI) . 

When 1 - ut > 0, the term (1 - CIX - of - 0;) is strictly positive for small 
enough tl and a:. Then (64) will hold when CI and a: are small enough and/or 
when y is large enough. So we have proved: 

Proposition B. I. There exist parameter values under which it is myopically 
optimal for all agents to upgrade their technologies in each period. 

Appendix C: The proofs 

Proof of Proposition 4.1. Let I$ be any density function of some random 
variable q taking values on the real line. Suppose that $J is symmetric about 
the origin and suppose that 4(q) is strictly decreasing in 1~1. Let @ be the 
cumulative distribution function corresponding to 4. Fix any k > 0 and any 
M 2 0. Then 

= @(k + M) - @( - k + M). (65) 

However, taking derivatives with respect to M in (65) yields 

a/aM[Prob({(M + q)2 I k))] = 4(k + M) - qb( - k + M). (66) 

Under the assumptions on 4 it is easy to see that, for k > 0 and M > 0, 
qb(k + M) - $( - K + M) < 0. Hence we conclude that Prob({(M + v)2 I k)) 
is decreasing in M. 
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Let ‘1 be normal with mean equal to zero and variance ahl(x,)x,/o~. From 

(65) and (66), m,+ 1 is a random variable whose distribution conditional on m, is 
the same as cxl”m,, + q. Fix any k > 0. Then 

Prob({m f+, I klm,) = Prob({(a”2m, + q)2 5 kJlm,). (67) 

Setting M = u112 m, in our earlier argument shows that (67) is decreasing in m,. 
This proves part (a) of our proposition. 

(b) This follows immediately from part (a). 
(c) Let .f: R + -+ R be any strictly increasing function. Since conditional on m, 

the distribution of m,, 1 is independent of the acceptance sets, we may write 

E, Wd+ I )I = LCf(mi+l)IAl. ,&I 

= LCKf(d+ 1 )lmJM~, ... ,4J, (f-33) 

where the outer expectation in the last term above is the expectation operator over 
m, conditional on the events Al, . ,A,. From part (a), the bigger is m, the 
stochastically larger is the distribution of rni+ 1 . That distribution is therefore largest 
at ti,, the largest value of m, in A,. Hence from (68) we conclude that 

EJf(m~+ 1 )I I E,Cf(d+ 1 ) 1 m, = tin]. Since f is an arbitrary strictly increasing 
function this implies the conclusion of the proposition as regards mi+ 1. Similar 
arguments prove the conclusion involving Im,+ 1 1. 0 

Proof of Proposition 4.3. From (29) 

where 6, is the post truncation variance of m,. Since M 2 0 and 0 5 6, I oz, the 
claim follows. 

Proof of Proposition 5.3. This follows immediately from taking limits as n -+ cx; in 
(20), and using the defining property of a Ponzi equilibrium. 0 

ProqfqfLemma 6.1. Define C(N x R) = {W: N x R -+ IR such that W is continu- 
ous and bounded) and C&V x R) = { W in C(N x R) which are decreasing in Irnl }. 
Then we may consider (36) as defining for each W in C(N >\ R) a unique function 
(T W ): N x R + IX. It is easy to check that when W is continuous and bounded so is 
T W. Hence T: C(N x 52) -+ C(N x R). Further, T is a contraction operator. It 
therefore has a unique fixed point in C(N x [w). That fixed point is the function 
W(n, m) = W,,(m). From Corollary 4.2, it is easy to show that if W lies in Cd(N x R), 
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then so too does T W. Hence T: C,(N x R) + Cd(N x R). The contraction mapping 
theorem therefore shows that W,(m) is decreasing in (ml. 0 

Proof of Proposition 6.2. From (41) and (39) 

(W’CW -(m,)‘] = {ECW;+,(~,+,)l~,*l - EJw:+i(m,+r)lj 

- {E, W Th) - EW’,h)). (69) 

From (42), this becomes 

(W 1 CW -(r&J’] I E[W;+,(m,+r)lfi,*l - E,CW;+,(m,+i)l. (70) 

If we let Ai, . . . ,A,, denote the equilibrium hiring sets then 

EaCw,e+~@n+~ )I = E,CW:+,(m,+i)IA,, . . ..A.1 

= ECECW~+,(m,+l)lm,llAl, . . . ,Al, (71) 

where expectations operator E k 1 A, . , A,] is over m, conditional on the hiring 
sets Al, . . . , A,, and E[. 1 WI,,] is that over m,,, 1 conditional on m,. From Corollary 
4.2, the distribution of Im,+ 1 I conditional on m, is stochastically increasing in the 
absolute value of m,. From Lemma 6.1, W,,, l(m) is decreasing in Iml. Since 
A, = [ - ti,,fi,], this implies that the right-hand side of (71) is less than 

ECWi+i(m,+i ) I tin]. Putting this in (70) implies that 

@Y)- ’ Lb,*“- (M21 I ECW,‘+~h,+I)l~,*l - ECW~+~h,+~)l%J. (72) 

Suppose per. absurdem that m,* > 6,. Then the left-hand side of (72) is positive. 
Further, Corollary 4.2 implies that the right-hand side of (72) is negative. This is 
a contradiction. Hence m,* I ti,. 0 
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